Skip to main content

Advertisement

Log in

Carbamazepine promotes Her-2 protein degradation in breast cancer cells by modulating HDAC6 activity and acetylation of Hsp90

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Histone deacetylase 6 (HDAC6) inhibition, recently, has been shown to promote the acetylation of heat-shock protein 90 (Hsp90) and disrupt its chaperone function. Her-2 oncoprotein is identified as a client protein of Hsp90. Therefore, in this study we examined the effect of carbamazepine, which could inhibit HDAC on Hsp90 acetylation and Her-2 stability. The results of this study demonstrate that while carbamazepine had no effect on the Her-2 mRNA level, it induced Her-2 protein degradation via the proteasome pathway by disrupting the chaperone function of Hsp90 in SK-BR-3 cells. Mechanistically, carbamazepine could enhance the acetylation of α-tubulin, indicating its inhibitory effect on HDAC6. Functionally, carbamazepine could synergize with trastuzumab or geldanamycin to promote Her-2 degradation and inhibit breast cancer cell proliferation. Thus, this study has potential clinical implications by providing a promising strategy to overcome the development of resistance against trastuzumab therapy for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, Wolter JM, Paton V, Shak S, Lieberman G, Slamon DJ (1999) Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17:2639–2648

    CAS  PubMed  Google Scholar 

  2. Andersson J, Linderholm B, Greim G, Lindh B, Lindman H, Tennvall J, Tennvall-Nittby L, Pettersson-Sköld D, Sverrisdottir A, Söderberg M, Klaar S, Bergh J (2002) A population-based study on the first forty-eight breast cancer patients receiving trastuzumab (Herceptin) on a named patient basis in Sweden. Acta Oncol 41:276–281

    Article  PubMed  Google Scholar 

  3. Engel RH, Kaklamani VG (2007) HER2-positive breast cancer: current and future treatment strategies. Drugs 67:1329–1341

    Article  CAS  PubMed  Google Scholar 

  4. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712

    Article  CAS  PubMed  Google Scholar 

  5. Pils D, Pinter A, Reibenwein J, Alfanz A, Horak P, Schmid BC, Hefler L, Horvat R, Reinthaller A, Zeillinger R, Krainer M (2007) In ovarian cancer the prognostic influence of HER2/neu is not dependent on the CXCR4/SDF-1 signalling pathway. Br J Cancer 96:485–491

    Article  CAS  PubMed  Google Scholar 

  6. Shawver LK, Slamon D, Ullrich A (2002) Smart drugs: tyrosine kinase inhibitors in cancer therapy. Cancer Cell 1:117–123

    Article  CAS  PubMed  Google Scholar 

  7. McKeage K, Perry CM (2002) Trastuzumab: a review of its use in the treatment of metastatic breast cancer overexpressing HER2. Drugs 62:209–243

    Article  CAS  PubMed  Google Scholar 

  8. Goetz MP, Toft DO, Ames MM, Erlichman C (2003) The Hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol 14:1169–1176

    Article  CAS  PubMed  Google Scholar 

  9. Hartson SD, Irwin AD, Shao J, Scroggins BT, Volk L, Huang W, Matts RL (2000) p50(cdc37) is a nonexclusive Hsp90 cohort which participates intimately in Hsp90-mediated folding of immature kinase molecules. Biochemistry 39:7631–7644

    Article  CAS  PubMed  Google Scholar 

  10. Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154:267–273

    Article  CAS  PubMed  Google Scholar 

  11. Terry J, Lubieniecka JM, Kwan W, Liu S, Nielsen TO (2005) Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin prevents synovial sarcoma proliferation via apoptosis in in vitro models. Clin Cancer Res 11:5631–5638

    Article  CAS  PubMed  Google Scholar 

  12. Seigneurin-Berny D, Verdel A, Curtet S, Lemercier C, Garin J, Rousseaux S, Khochbin S (2001) Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol Cell Biol 21:8035–8044

    Article  CAS  PubMed  Google Scholar 

  13. Boyault C, Zhang Y, Fritah S, Caron C, Gilquin B, Kwon SH, Garrido C, Yao TP, Vourc’h C, Matthias P, Khochbin S (2007) HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev 21:2172–2181

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Li N, Caron C, Matthias G, Hess D, Khochbin S, Matthias P (2003) HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. Embo J 22:1168–1179

    Article  CAS  PubMed  Google Scholar 

  15. Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV, Yoshida M, Toft DO, Pratt WB, Yao TP (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18:601–607

    Article  CAS  PubMed  Google Scholar 

  16. Beutler AS, Li S, Nicol R, Walsh MJ (2005) Carbamazepine is an inhibitor of histone deacetylases. Life Sci 76:3107–3115

    Article  CAS  PubMed  Google Scholar 

  17. Kuminek G, Kratz JM, Ribeiro R, Kelmann RG, de Araújo BV, Teixeira HF, Simões CM, Koester LS (2009) Pharmacokinetic study of a carbamazepine nanoemulsion in beagle dogs. Int J Pharm 378:146–148

    Article  CAS  PubMed  Google Scholar 

  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  19. Yu X, Guo ZX, Marcu MG, Neckers L, Nguyen DM, Chen GA, Schrump DS (2002) Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst 94:504–513

    CAS  PubMed  Google Scholar 

  20. Guardiola AR, Yao TP (2002) Molecular cloning and characterization of a novel histone deacetylase HDAC10. J Biol Chem 277:3350–3356

    Article  CAS  PubMed  Google Scholar 

  21. McLaughlin SH, Sobott F, Yao ZP, Zhang W, Nielsen PR, Grossmann JG, Laue ED, Robinson CV, Jackson SE (2006) The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins. J Mol Bio 356:746–758

    Article  CAS  Google Scholar 

  22. Kelly WK, Marks PA (2005) Drug insight: histone deacetylase inhibitors—development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat Clin Pract Oncol 2:150–157

    Article  CAS  PubMed  Google Scholar 

  23. Lam PB, Burga LN, Wu BP, Hofstatter EW, Lu KP, Wulf GM (2008) Prolyl isomerase Pin1 is highly expressed in Her2-positive breast cancer and regulates erbB2 protein stability. Mol Cancer 7:91

    Article  PubMed  Google Scholar 

  24. Xu W, Soga S, Beebe K, Lee MJ, Kim YS, Trepel J, Neckers L (2007) Sensitivity of epidermal growth factor receptor and ErbB2 exon 20 insertion mutants to Hsp90 inhibition. Br J Cancer 97:741–744

    Article  CAS  PubMed  Google Scholar 

  25. Xu W, Neckers L (2007) Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling pathways of cancer cells. Clin Cancer Res 13:1625–1629

    Article  CAS  PubMed  Google Scholar 

  26. Fiskus W, Ren Y, Mohapatra A, Bali P, Mandawat A, Rao R, Herger B, Yang Y, Atadja P, Wu J, Bhalla K (2007) Hydroxamic acid analogue histone deacetylase inhibitors attenuate estrogen receptor-alpha levels and transcriptional activity: a result of hyperacetylation and inhibition of chaperone function of heat shock protein 90. Clin Cancer Res 13:4882–4890

    Article  CAS  PubMed  Google Scholar 

  27. Bali P, Pranpat M, Bradner J, Balasis M, Fiskus W, Guo F, Rocha K, Kumaraswamy S, Boyapalle S, Atadja P, Seto E, Bhalla K (2005) Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 280:26729–26734

    Article  CAS  PubMed  Google Scholar 

  28. Blagosklonny MV, Robey R, Sackett DL, Du L, Traganos F, Darzynkiewicz Z, Fojo T, Bates SE (2002) Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity. Mol Cancer Ther 1:937–941

    CAS  PubMed  Google Scholar 

  29. Furumai R, Matsuyama A, Kobashi N, Lee KH, Nishiyama M, Nakajima H, Tanaka A, Komatsu Y, Nishino N, Yoshida M, Horinouchi S (2002) FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res 62:4916–4921

    CAS  PubMed  Google Scholar 

  30. Remy S, Beck H (2006) Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain 129:18–35

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by grants from Heilongjiang Provincial Bureau of Health (2009015) and from the Tumor Hospital of Harbin Medical University (JJ2007-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Cai.

Additional information

Qingwei Meng, Xuesong Chen, and Lichun Sun have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, Q., Chen, X., Sun, L. et al. Carbamazepine promotes Her-2 protein degradation in breast cancer cells by modulating HDAC6 activity and acetylation of Hsp90. Mol Cell Biochem 348, 165–171 (2011). https://doi.org/10.1007/s11010-010-0651-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0651-y

Keywords