Skip to main content
Log in

The alternative splice variant of DAPK-1, s-DAPK-1, induces proteasome-independent DAPK-1 destabilization

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Death-associated protein kinase 1 (DAPK-1) is a Ca2+/CaM-regulated kinase involved in multiple cellular signalling pathways that trigger cell survival, apoptosis, and autophagy. An alternatively spliced product expressed from the dapk1 locus, named s-DAPK-1, does not contain the kinase domain but has part of the DAPK-1 ankyrin-repeat and a novel polypeptide tail extension which is processed proteolytically in vivo. Cleavage of this polypeptide tail from s-DAPK-1 can regulate the ability of the protein to mimic one of the biological functions of DAPK-1 in promoting membrane blebbing. The full-length DAPK-1 protein is a relatively long-lived protein whose half-life is regulated by stress-activated signals from TNFR1 or HSP90 that can promote DAPK-1 protein degradation. Transfection of s-DAPK-1 into cells can also have a direct effect on DAPK-1 protein itself by promoting DAPK-1 de-stabilization. This effect does not require the novel polypeptide tail-extension of s-DAPK-1, as the core ankyrin-repeat containing region of s-DAPK-1 is sufficient to promote DAPK-1 protein de-stabilization. Conversely, the minimal domain on full-length DAPK-1 that responds to the effect of s-DAPK-1 is not the ankyrin-repeat domain but the core kinase domain of DAPK-1. The de-stabilization of DAPK-1 by s-DAPK-1 is not dependent upon the proteasome. However, s-DAPK-1 itself is a very short-lived protein which is regulated by a proteasomal-dependent pathway. Together, these data identify a novel function of s-DAPK-1 in controlling the half-life of DAPK-1 protein itself and indicate that the degradation of each gene product is controlled by two distinct degradation pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bialik S, Kimchi A (2006) The death-associated protein kinases: structure, function, and beyond. Annu Rev Biochem 75:189–210. doi:10.1146/annurev.biochem.75.103004.142615

    Article  PubMed  CAS  Google Scholar 

  2. Kuo JC, Wang WJ, Yao CC, Wu PR, Chen RH (2006) The tumor suppressor DAPK inhibits cell motility by blocking the integrin-mediated polarity pathway. J Cell Biol 172:619–631. doi:10.1083/jcb.200505138

    Article  PubMed  CAS  Google Scholar 

  3. Harrison B, Kraus M, Burch L, Stevens C, Craig A, Gordon-Weeks P, Hupp TR (2008) DAPK-1 binding to a linear peptide motif in MAP1B stimulates autophagy and membrane blebbing. J Biol Chem 283:9999–10014. doi:10.1074/jbc.M706040200

    Article  PubMed  CAS  Google Scholar 

  4. Lin Y, Stevens C, Hupp T (2007) Identification of a dominant negative functional domain on DAPK-1 that degrades DAPK-1 protein and stimulates TNFR-1-mediated apoptosis. J Biol Chem 282:16792–16802. doi:10.1074/jbc.M611559200

    Article  PubMed  CAS  Google Scholar 

  5. Raval A, Tanner SM, Byrd JC, Angerman EB, Perko JD, Chen SS, Hackanson B, Grever MR, Lucas DM, Matkovic JJ, Lin TS, Kipps TJ, Murray F, Weisenburger D, Sanger W, Lynch J, Watson P, Jansen M, Yoshinaga Y, Rosenquist R, de Jong PJ, Coggill P, Beck S, Lynch H, de la Chapelle A, Plass C (2007) Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell 129:879–890. doi:10.1016/j.cell.2007.03.043

    Article  PubMed  CAS  Google Scholar 

  6. Raveh T, Droguett G, Horwitz MS, De Pinho RA, Kimchi A (2001) DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat Cell Biol 3:1–7. doi:10.1038/35050500

    Article  PubMed  CAS  Google Scholar 

  7. Craig AL, Chrystal JA, Fraser JA, Sphyris N, Lin Y, Harrison BJ, Scott MT, Dornreiter I, Hupp TR (2007) The MDM2 ubiquitination signal in the DNA-binding domain of p53 forms a docking site for calcium calmodulin kinase superfamily members. Mol Cell Biol 27:3542–3555. doi:10.1128/MCB.01595-06

    Article  PubMed  CAS  Google Scholar 

  8. Chen CH, Wang WJ, Kuo JC, Tsai HC, Lin JR, Chang ZF, Chen RH (2005) Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK. EMBO J 24:294–304. doi:10.1038/sj.emboj.7600510

    Article  PubMed  CAS  Google Scholar 

  9. Wang WJ, Kuo JC, Ku W, Lee YR, Lin FC, Chang YL, Lin YM, Chen CH, Huang YP, Chiang MJ, Yeh SW, Wu PR, Shen CH, Wu CT, Chen RH (2007) The tumor suppressor DAPK is reciprocally regulated by tyrosine kinase Src and phosphatase LAR. Mol Cell 27:701–716. doi:10.1016/j.molcel.2007.06.037

    Article  PubMed  Google Scholar 

  10. Anjum R, Roux PP, Ballif BA, Gygi SP, Blenis J (2005) The tumor suppressor DAP kinase is a target of RSK-mediated survival signaling. Curr Biol 15:1762–1767. doi:10.1016/j.cub.2005.08.050

    Article  PubMed  CAS  Google Scholar 

  11. Stevens C, Lin Y, Harrison B, Burch L, Ridgway RA, Sansom O ,Hupp T (2008) Peptide combinatorial libraries Identify TSC2 as a DAPK death domain binding protein and reveal a stimulatory role for DAPK in mTORC1 signalling. J Biol Chem 284:334–344

    Google Scholar 

  12. Jin Y, Blue EK, Gallagher PJ (2006) Control of death-associated protein kinase (DAPK) activity by phosphorylation and proteasomal degradation. J Biol Chem 281:39033–39040. doi:10.1074/jbc.M605097200

    Article  PubMed  CAS  Google Scholar 

  13. Zhang L, Nephew KP, Gallagher PJ (2007) Regulation of death-associated protein kinase. Stabilization by HSP90 heterocomplexes. J Biol Chem 282:11795–11804. doi:10.1074/jbc.M610430200

    Article  PubMed  CAS  Google Scholar 

  14. Jin Y, Blue EK, Dixon S, Shao Z, Gallagher PJ (2002) A death-associated protein kinase (DAPK)-interacting protein, DIP-1, is an E3 ubiquitin ligase that promotes tumor necrosis factor-induced apoptosis and regulates the cellular levels of DAPK. J Biol Chem 277:46980–46986. doi:10.1074/jbc.M208585200

    Article  PubMed  CAS  Google Scholar 

  15. Lin Y, Stevens C, Hrstka R, Harrison B, Fourtouna A, Pathuri S, Vojtesek B, Hupp T (2008) An alternative transcript from the death-associated protein kinase 1 locus encoding a small protein selectively mediates membrane blebbing. FEBS J 275:2574–2584. doi:10.1111/j.1742-4658.2008.06404.x

    Article  PubMed  CAS  Google Scholar 

  16. Li J, Mahajan A, Tsai MD (2006) Ankyrin repeat: a unique motif mediating protein–protein interactions. Biochemistry 45:15168–15178. doi:10.1021/bi062188q

    Article  PubMed  CAS  Google Scholar 

  17. Ciechanover A (2006) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Exp Biol Med (Maywood) 231:1197–1211

    Google Scholar 

  18. Smyth DR, Mrozkiewicz MK, McGrath WJ, Listwan P, Kobe B (2003) Crystal structures of fusion proteins with large-affinity tags. Protein Sci 12:1313–1322. doi:10.1110/ps.0243403

    Article  PubMed  CAS  Google Scholar 

  19. Klose J, Wendt N, Kubald S, Krause E, Fechner K, Beyermann M, Bienert M, Rudolph R, Rothemund S (2004) Hexa-histidin tag position influences disulfide structure but not binding behavior of in vitro folded N-terminal domain of rat corticotropin-releasing factor receptor type 2a. Protein Sci 13:2470–2475. doi:10.1110/ps.04835904

    Article  PubMed  CAS  Google Scholar 

  20. Hanazono Y, Yu JM, Dunbar CE, Emmons RV (1997) Green fluorescent protein retroviral vectors: low titer and high recombination frequency suggest a selective disadvantage. Hum Gene Ther 8:1313–1319. doi:10.1089/hum.1997.8.11-1313

    Article  PubMed  CAS  Google Scholar 

  21. Anglesio MS, Evdokimova V, Melnyk N, Zhang L, Fernandez CV, Grundy PE, Leach S, Marra MA, Brooks-Wilson AR, Penninger J, Sorensen PH (2004) Differential expression of a novel ankyrin containing E3 ubiquitin-protein ligase, Hace1, in sporadic Wilms’ tumor versus normal kidney. Hum Mol Genet 13:2061–2074. doi:10.1093/hmg/ddh215

    Article  PubMed  CAS  Google Scholar 

  22. Citri A, Harari D, Shohat G, Ramakrishnan P, Gan J, Lavi S, Eisenstein M, Kimchi A, Wallach D, Pietrokovski S, Yarden Y (2006) Hsp90 recognizes a common surface on client kinases. J Biol Chem 281:14361–14369. doi:10.1074/jbc.M512613200

    Article  PubMed  CAS  Google Scholar 

  23. Ding WX, Ni HM, Gao W, Yoshimori T, Stolz DB, Ron D, Yin XM (2007) Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 171:513–524. doi:10.2353/ajpath.2007.070188

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ted R. Hupp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Stevens, C., Harrison, B. et al. The alternative splice variant of DAPK-1, s-DAPK-1, induces proteasome-independent DAPK-1 destabilization. Mol Cell Biochem 328, 101–107 (2009). https://doi.org/10.1007/s11010-009-0079-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0079-4

Keywords

Navigation