Skip to main content
Log in

Drosophila protein kinase CK2 is rendered temperature-sensitive by mutations of highly conserved residues flanking the activation segment

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

CK2 is a Ser/Thr protein kinase essential for animal development. Although null alleles for CK2 are available in the mouse and Drosophila models, they are lethal when homozygous, thus necessitating conditional alleles for analysis of its developmental roles. We describe the isolation of temperature-sensitive (ts) alleles of Drosophila CK2α (dCK2α). These alleles efficiently rescue lethality of yeast lacking endogenous CK2 at 29°C, but this ability is lost at higher temperatures in an allele-specific manner. These ts-variants exhibit properties akin to the wild type protein, and interact robustly with dCK2β. Modeling of these ts-variants using the crystal structure of human CK2α indicates that the affected residues are in close proximity to the active site. We find that substitution of Asp212 elicits potent ts-behavior, an important finding because this residue contributes to stability of the activation segment and is invariant in other Ser/Thr protein kinases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369:1–15. doi:10.1042/BJ20021469

    Article  PubMed  CAS  Google Scholar 

  2. Allende JE, Allende CC (1995) Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J 9:313–322

    PubMed  CAS  Google Scholar 

  3. Graham KC, Litchfield DW (2000) The regulatory beta subunit of protein kinase CK2 mediates formation of tetrameric CK2 complexes. J Biol Chem 275:5003–5010. doi:10.1074/jbc.275.7.5003

    Article  PubMed  CAS  Google Scholar 

  4. Cochet C, Chambaz EM (1983) Oligomeric structure and catalytic activity of G type casein kinase. J Biol Chem 258:1403–1406

    PubMed  CAS  Google Scholar 

  5. Chantalat L, Leroy D, Filhol O et al (1999) Crystal structure of the human protein kinase CK2 regulatory subunit reveals its zinc finger-mediated dimerization. EMBO J 18:2930–2940. doi:10.1093/emboj/18.11.2930

    Article  PubMed  CAS  Google Scholar 

  6. Saxena A, Padmanabha R, Glover CVC (1987) Isolation and sequencing of cDNA clones encoding a and b subunits of Drosophila melanogaster casein kinase II. Mol Cell Biol 7:3409–3417

    PubMed  CAS  Google Scholar 

  7. Snell V, Nurse P (1994) Genetic analysis of cell morphogenesis in fission yeast-a role for casein kinase II in the establishment of polarized growth. EMBO J 13:2066–2074

    PubMed  CAS  Google Scholar 

  8. Chen-Wu LPJ, Padmanabha R, Glover CVC (1988) Isolation, sequencing, and disruption of the CKA1 gene encoding the alpha subunit of yeast casein kinase II. Mol Cell Biol 8:4981–4990

    PubMed  CAS  Google Scholar 

  9. Padmanabha R, Chen-Wu JLP, Hanna DE et al (1990) Isolation, sequencing, and disruption of the yeast CKA2 gene: casein kinase II is essential for viability in Saccharomyces cerevisiae. Mol Cell Biol 10:4089–4099

    PubMed  CAS  Google Scholar 

  10. Padmanabha R, Glover CVC (1987) Casein kinase II of yeast contains two distinct a polypeptides and an unusually large b subunit. J Biol Chem 262:1829–1835

    PubMed  CAS  Google Scholar 

  11. Bidwai AP, Reed JC, Glover CVC (1994) Casein kinase II of Saccharomyces cerevisiae contains two distinct regulatory subunits, beta and beta′. Arch Biochem Biophys 309:348–355. doi:10.1006/abbi.1994.1123

    Article  PubMed  CAS  Google Scholar 

  12. Bidwai AP, Zhao WF, Glover CVC (1999) A gene located at 56F1-2 in Drosophila melanogaster encodes a novel metazoan beta-like subunit of casein kinase II. Mol Cell Biol Res Commun 1:21–28. doi:10.1006/mcbr.1999.0103

    Article  PubMed  CAS  Google Scholar 

  13. Bidwai AP, Reed JC, Glover CVC (1995) Cloning and disruption of CKB1, the gene encoding the 38-kDa beta subunit of Saccharomyces cerevisiae casein kinase II (CKII). Deletion of CKII regulatory subunits elicits a salt-sensitive phenotype. J Biol Chem 270:10395–10404. doi:10.1074/jbc.270.18.10395

    Article  PubMed  CAS  Google Scholar 

  14. Reed JC, Bidwai AP, Glover CVC (1994) Cloning and disruption of CKB2, the gene encoding the 32 kDa regulatory beta′ subunit of Saccharomyces cerevisiae casein kinase II. J Biol Chem 269:18192–18200

    PubMed  CAS  Google Scholar 

  15. Kuenzel EA, Mulligan JA, Sommercorn J et al (1987) Substrate specificity determinants for casein kinase II as deduced from studies with synthetic peptides. J Biol Chem 262:9136–9140

    PubMed  CAS  Google Scholar 

  16. Meggio F, Marin O, Pinna LA (1994) Substrate specificity of protein kinase CK2. Cell Mol Biol Res 40:401–409

    PubMed  CAS  Google Scholar 

  17. Glover CVC (1998) On the physiological role of casein kinase II in Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol 59:95–133. doi:10.1016/S0079-6603(08)61030-2

    Article  PubMed  CAS  Google Scholar 

  18. Bidwai AP (2000) Structure and function of casein kinase II. Recent Res Dev Mol Cell Biol 1:51–82

    CAS  Google Scholar 

  19. Arrigoni G, Pagano MA, Sarno S et al (2008) Mass spectrometry analysis of a protein kinase CK2beta subunit interactome isolated from mouse brain by affinity chromatography. J Proteome Res 7:990–1000. doi:10.1021/pr070500s

    Article  PubMed  CAS  Google Scholar 

  20. Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2. FASEB J 17:349–368. doi:10.1096/fj.02-0473rev

    Article  PubMed  CAS  Google Scholar 

  21. Hanna DE, Rethinaswamy A, Glover CVC (1995) Casein kinase II is required for cell cycle progression during G1 and G2/M in Saccharomyces cerevisiae. J Biol Chem 270:25905–25914. doi:10.1074/jbc.270.43.25905

    Article  PubMed  CAS  Google Scholar 

  22. Pepperkok R, Lorenz P, Ansorge W et al (1994) Casein kinase II is required for transition of G0/G1, early G1, and G1/S phases of the cell cycle. J Biol Chem 269:6986–6991

    PubMed  CAS  Google Scholar 

  23. ole-MoiYoi OK (1995) Casein kinase II in theileriosis. Science 267:834–836

    Article  PubMed  CAS  Google Scholar 

  24. Taghli-Lamallem O, Hsia C, Ronshaugen M et al (2008) Context-dependent regulation of Hox protein functions by CK2 phosphorylation sites. Dev Genes Evol 218:321–332. doi:10.1007/s00427-008-0224-1

    Article  PubMed  CAS  Google Scholar 

  25. Jaffe L, Ryoo H-D, Mann RS (1997) A role for phosphorylation by casein kinase II in modulating Antennapedia activity in Drosophila. Genes Dev 11:1327–1340. doi:10.1101/gad.11.10.1327

    Article  PubMed  CAS  Google Scholar 

  26. Bourbon HM, Martin-Blanco E, Rosen D et al (1995) Phosphorylation of the Drosophila engrailed protein at a site outside its homeodomain enhances DNA binding. J Biol Chem 270:11130–11139. doi:10.1074/jbc.270.19.11130

    Article  PubMed  CAS  Google Scholar 

  27. Goldstein RE, Cook O, Dinur T et al (2005) An eh1-like motif in odd-skipped mediates recruitment of groucho and repression in vivo. Mol Cell Biol 25:10711–10720. doi:10.1128/MCB.25.24.10711-10720.2005

    Article  PubMed  CAS  Google Scholar 

  28. Bose A, Kahali B, Zhang S et al (2006) Drosophila CK2 regulates lateral-inhibition during eye and bristle development. Mech Dev 123:649–664. doi:10.1016/j.mod.2006.07.003

    Article  PubMed  CAS  Google Scholar 

  29. Karandikar U, Trott RL, Yin J et al (2004) Drosophila CK2 regulates eye morphogenesis via phosphorylation of E(spl)M8. Mech Dev 121:273–286. doi:10.1016/j.mod.2004.01.008

    Article  PubMed  CAS  Google Scholar 

  30. Dominguez I, Mizuno J, Wu H et al (2004) Protein kinase CK2 is required for dorsal axis formation in Xenopus embryos. Dev Biol 274:110–124. doi:10.1016/j.ydbio.2004.06.021

    Article  PubMed  CAS  Google Scholar 

  31. Seldin DC, Landesman-Bollag E, Farago M et al (2005) CK2 as a positive regulator of Wnt signalling and tumourigenesis. Mol Cell Biochem 274:63–67. doi:10.1007/s11010-005-3078-0

    Article  PubMed  CAS  Google Scholar 

  32. Buchou T, Vernet M, Blond O et al (2003) Disruption of the regulatory b subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Mol Cell Biol 23:908–915. doi:10.1128/MCB.23.3.908-915.2003

    Article  PubMed  CAS  Google Scholar 

  33. Seldin DC, Lou DY, Toselli P et al (2008) Gene targeting of CK2 catalytic subunits. Mol Cell Biochem 316:141–147. doi:10.1007/s11010-008-9811-8

    Article  PubMed  CAS  Google Scholar 

  34. Lou DY, Dominguez I, Toselli P et al (2008) The alpha catalytic subunit of protein kinase CK2 is required for mouse embryonic development. Mol Cell Biol 28:131–139. doi:10.1128/MCB.01119-07

    Article  PubMed  CAS  Google Scholar 

  35. Cauchi RJ, van den Heuvel M (2006) The fly as a model for neurodegenerative diseases: is it worth the jump? Neurodegener Dis 3:338–356. doi:10.1159/000097303

    Article  PubMed  Google Scholar 

  36. Lin JM, Kilman VL, Keegan K et al (2002) A role for casein kinase 2alpha in the Drosophila circadian clock. Nature 420:816–820. doi:10.1038/nature01235

    Article  PubMed  CAS  Google Scholar 

  37. Allada R, Meissner RA (2005) Casein kinase 2, circadian clocks, and the flight from mutagenic light. Mol Cell Biochem 274:141–149. doi:10.1007/s11010-005-2943-1

    Article  PubMed  CAS  Google Scholar 

  38. Niefind K, Guerra B, Pinna LA et al (1998) Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 a resolution. EMBO J 17:2451–2462. doi:10.1093/emboj/17.9.2451

    Article  PubMed  CAS  Google Scholar 

  39. Rasmussen T, Skjøth IHE, Jensen HH et al (2005) Biochemical characterization of the recombinant human Drosophila homologues Timekeeper and Andante involved in the Drosophila circadian oscillator. Mol Cell Biochem 274:151–161. doi:10.1007/s11010-005-2944-0

    Article  PubMed  CAS  Google Scholar 

  40. Kahali B, Trott R, Paroush Z et al (2008) Drosophila CK2 phosphorylates hairy and regulates its activity in vivo. Biochem Biophys Res Commun 373:637–642. doi:10.1016/j.bbrc.2008.06.084

    Article  PubMed  CAS  Google Scholar 

  41. Akten B, Jauch E, Genova GK et al (2003) A role for CK2 in the Drosophila circadian oscillator. Nat Neurosci 6:251–257. doi:10.1038/nn1007

    Article  PubMed  CAS  Google Scholar 

  42. Jauch E, Wecklein H, Stark F et al (2006) The Drosophila melanogaster DmCK2beta transcription unit encodes for functionally non-redundant protein isoforms. Gene 374:142–152. doi:10.1016/j.gene.2006.01.026

    Article  PubMed  CAS  Google Scholar 

  43. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  44. Dahmus GK, Glover CVC, Brutlag D et al (1984) Similarities in structure and function of calf thymus and Drosophila casein kinase II. J Biol Chem 259:9001–9006

    PubMed  CAS  Google Scholar 

  45. Chien CT, Bartel PL, Sternglanz R et al (1991) The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci USA 88:9578–9582. doi:10.1073/pnas.88.21.9578

    Article  PubMed  CAS  Google Scholar 

  46. Durfee T, Becherer K, Chen PL et al (1993) The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev 7:555–569. doi:10.1101/gad.7.4.555

    Article  PubMed  CAS  Google Scholar 

  47. Harvey AJ, Bidwai AP, Miller LK (1997) Doom, a product of the Drosophila mod(mdg4) gene induces apoptosis and binds to baculovirus inhibitor-of apoptosis proteins. Mol Cell Biol 17:2835–2843

    PubMed  CAS  Google Scholar 

  48. Karandikar U, Anderson S, Mason N et al (2003) The Drosophila SSL gene is expressed in larvae, pupae, and adults, exhibits sexual dimorphism, and mimics properties of the β subunit of casein kinase II. Biochem Biophys Res Commun 301:941–947. doi:10.1016/S0006-291X(03)00073-1

    Article  PubMed  CAS  Google Scholar 

  49. James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for efficient two-hybrid selection in yeast. Genetics 144:1425–1436

    PubMed  CAS  Google Scholar 

  50. Niefind K, Guerra B, Ermakowa I et al (2001) Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J 20:5320–5331. doi:10.1093/emboj/20.19.5320

    Article  PubMed  CAS  Google Scholar 

  51. Knighton DR, Zheng J, Ten-Eyck LF et al (1991) Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependant protein kinase. Science 253:407–414. doi:10.1126/science.1862342

    Article  PubMed  CAS  Google Scholar 

  52. Knighton DR, Zheng J, Ten-Eyck LF et al (1991) Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependant protein kinase. Science 253:414–420. doi:10.1126/science.1862343

    Article  PubMed  CAS  Google Scholar 

  53. Bidwai AP, Hanna DE, Glover CVC (1992) The free catalytic subunit of casein kinase II is not toxic in vivo. J Biol Chem 267:18790–18796

    PubMed  CAS  Google Scholar 

  54. Hermosilla GH, Tapia JC, Allende JE (2005) Minimal CK2 activity required for yeast growth. Mol Cell Biochem 274:39–46. doi:10.1007/s11010-005-3112-2

    Article  PubMed  CAS  Google Scholar 

  55. Johnston M (1987) A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol Rev 51:458–476

    PubMed  CAS  Google Scholar 

  56. Rethinaswamy A, Birnbaum MJ, Glover CVC (1998) Temperature-sensitive mutations of the CKA1 gene reveal a role for casein kinase II in maintenance of cell polarity in Saccharomyces cerevisiae. J Biol Chem 273:5869–5877. doi:10.1074/jbc.273.10.5869

    Article  PubMed  CAS  Google Scholar 

  57. Roussou I, Dretta G (1994) The Schizosaccharomyces pombe casein kinase II alpha and beta subunits: evolutionary conservation and positive role for the beta subunits. Mol Cell Biol 14:576–586

    PubMed  CAS  Google Scholar 

  58. Glover CVC, Shelton ER, Brutlag DL (1983) Purification and characterization of a type II casein kinase from Drosophila melanogaster. J Biol Chem 258:3258–3265

    PubMed  CAS  Google Scholar 

  59. Jauch E, Melzig J, Brkulj M et al (2002) In vivo functional analysis of Drosophila protein kinase casein kinase 2 (CK2) beta-subunit. Gene 298:29–39. doi:10.1016/S0378-1119(02)00921-6

    Article  PubMed  CAS  Google Scholar 

  60. Gietz RD, Graham KC, Litchfield DW (1995) Interactions between the subunits of casein kinase II. J Biol Chem 270:13017–13021. doi:10.1074/jbc.270.22.13017

    Article  PubMed  CAS  Google Scholar 

  61. Bidwai AP, Saxena A, Zhao W et al (2000) Multiple, closely spaced alternative 5′ exons in the DmCKIIbeta gene of Drosophila melanogaster. Mol Cell Biol Res Commun 3:283–291. doi:10.1006/mcbr.2000.0223

    Article  PubMed  CAS  Google Scholar 

  62. Lin WJ, Tuazon PT, Traugh JA (1991) Characterization of the catalytic subunit of casein kinase II expressed in Escherichia coli and regulation of activity. J Biol Chem 266:5664–5669

    PubMed  CAS  Google Scholar 

  63. Granowski N, Boldyreff B, Issinger OG (1991) Isolation and characterization of recombinant human casein kinase II subunits alpha and beta from bacteria. Eur J Biochem 198:25–30. doi:10.1111/j.1432-1033.1991.tb15982.x

    Article  Google Scholar 

  64. Birnbaum MJ, Wu J, O’Reilley DR et al (1992) Expression, purification and characterization of Drosophila casein kinase II using the baculovirus system. Protein Expr Purif 3:142–150

    PubMed  CAS  Google Scholar 

  65. Bidwai AP, Reed JC, Glover CVC (1993) The phosphorylation of Calmodulin by the catalytic subunit of casein kinase II is inhibited by the regulatory subunit. Arch Biochem Biophys 300:265–270. doi:10.1006/abbi.1993.1037

    Article  PubMed  CAS  Google Scholar 

  66. Bandhakavi S, McCann RO, Hanna DE et al (2003) Genetic interactions among ZDS1, 2, CDC37, and protein kinase CK2 in Saccharomyces cerevisiae. FEBS Lett 554:295–300. doi:10.1016/S0014-5793(03)01165-7

    Article  PubMed  CAS  Google Scholar 

  67. Bandhakavi S, McCann RO, Hanna DE et al (2002) A positive feedback loop between protein kinase CKII and Cdc37 promotes the activity of multiple protein kinases. J Biol Chem 278:2829–2836. doi:10.1074/jbc.M206662200

    Article  PubMed  CAS  Google Scholar 

  68. Cutforth T, Rubin GM (1994) Mutations in HSP83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell 77:1027–1036. doi:10.1016/0092-8674(94)90442-1

    Article  PubMed  CAS  Google Scholar 

  69. Miyata Y, Yahara I (1992) The 90-kDa heat shock protein, HSP90, binds and protects casein kinase II from self aggregation and enhances its kinase activity. J Biol Chem 267:7042–7047

    PubMed  CAS  Google Scholar 

  70. Shi Y, Brown ED, Walsh CT (1994) Expression of recombinant human casein kinase II and recombinant heat shock protein 90 in Escherichia coli and characterization of their interactions. Proc Natl Acad Sci USA 91:2767–2771. doi:10.1073/pnas.91.7.2767

    Article  PubMed  CAS  Google Scholar 

  71. Lozeman FJ, Litchfield DW, Piening C et al (1990) Isolation and characterization of human cdna clones encoding the alpha and alpha′ subunits of casein kinase II. Biochem 29:8436–8447. doi:10.1021/bi00488a034

    Article  CAS  Google Scholar 

  72. Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52. doi:10.1126/science.3291115

    Article  PubMed  CAS  Google Scholar 

  73. Hanks SK, Quinn AM (1991) Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol 200:38–61. doi:10.1016/0076-6879(91)00126-H

    Article  PubMed  CAS  Google Scholar 

  74. Madhusudan, Trafny EA, Xuong NH et al (1994) cAMP-dependent protein kinase: crystallographic insights into substrate recognition and phosphotransfer. Protein Sci 3:176–187

    Article  PubMed  CAS  Google Scholar 

  75. Fortini ME, Skupski MP, Boguski MS et al (2000) A survey of human disease gene counterparts in the Drosophila genome. J Cell Biol 150:23–30. doi:10.1083/jcb.150.2.F23

    Article  Google Scholar 

  76. Wawersik S, Maas RL (2000) Vertebrate eye development as modeled in Drosophila. Hum Mol Genet 9:917–925. doi:10.1093/hmg/9.6.917

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Claiborne Glover for generously providing yeast strains. This work was supported by a grant from the NIH/National Eye Institute RO1 EY015718 to A.P.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok P. Bidwai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuntamalla, P.P., Kunttas-Tatli, E., Karandikar, U. et al. Drosophila protein kinase CK2 is rendered temperature-sensitive by mutations of highly conserved residues flanking the activation segment. Mol Cell Biochem 323, 49–60 (2009). https://doi.org/10.1007/s11010-008-9963-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9963-6

Keywords

Navigation