Skip to main content
Log in

A structural insight into CK2 inhibition

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The acidophilic Ser/Thr protein kinase CK2 displays some unique properties such as high pleiotropicity and constitutive activity. CK2 is involved in many fundamental aspects of the normal cell life, for instance it promotes cell survival and enhances the tumour phenotype under special circumstances. This makes CK2 an appealing target for the development of inhibitors with pharmacological potential. Here we present an overview of our recent studies on inhibitors directed to the CK2 ATP-binding site whose distinctive features are highlighted by the ability to use both ATP and GTP as co-substrates and by its low susceptibility to staurosporine inhibition. We discuss the effects of the binding of different chemical families of fairly selective inhibitors with potency in the nanomolar or low micromolar range. An important common energetic contribution to the binding is due to the hydrophobic interaction with the apolar surface region of the CK2 binding cleft. The analysis of the known CK2 crystal structures reveals the presence of some highly conserved water molecules in this region. These waters reside near Lys68, in an area with a positive electrostatic potential that is able to attract and orient negatively charged ligands. The presence of this positive region and of two unique bulky residues, Ile66 and Ile174, responsible for the reduced dimension of the CK2 active site, play a critical role in determining ligand orientation and binding selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369:1–15. doi:10.1042/BJ20021469

    Article  PubMed  CAS  Google Scholar 

  2. Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17:349–368. doi:10.1096/fj.02-0473rev

    Article  PubMed  CAS  Google Scholar 

  3. Pinna LA (2002) Protein kinase CK2: a challenge to canons. J Cell Sci 115:3873–3878. doi:10.1242/jcs.00074

    Article  PubMed  CAS  Google Scholar 

  4. Meggio F, Donella Deana A, Ruzzene M, Brunati AM, Cesaro L, Guerra B et al (1995) Different susceptibility of protein kinases to staurosporine inhibition kinetic studies and molecular bases for the resistance of protein kinase CK2. Eur J Biochem 234:317–322. doi:10.1111/j.1432-1033.1995.317_c.x

    Article  PubMed  CAS  Google Scholar 

  5. Ahmad KA, Wang G, Slaton J, Unger G, Ahmed K (2005) Targeting CK2 for cancer therapy. Anticancer Drugs 16:1037–1043. doi:10.1097/00001813-200511000-00001

    Article  PubMed  CAS  Google Scholar 

  6. Tawfic S, Yu S, Wang H, Faust R, Davis A, Ahmed K (2001) Protein kinase CK2 signal in neoplasia. Histol Histopathol 16:573–582

    PubMed  CAS  Google Scholar 

  7. Unger GM, Davis AT, Slaton JW, Ahmed K (2004) Protein kinase CK2 as regulator of cell survival: implications for cancer therapy. Curr Cancer Drug Targets 4:77–84. doi:10.2174/1568009043481687

    Article  PubMed  Google Scholar 

  8. Kelliher MA, Seldin DC, Leder P (1996) Tal-1 induces T-cell acute lymphoblastic leukemia accelerated by casein kinase IIalpha. EMBO J 15:5160–5166

    PubMed  CAS  Google Scholar 

  9. Landesman-Bollag E, Channavajhala PL, Cardiff RD, Seldin DC (1998) p53 deficiency and misexpression of protein kinase CK2alpha collaborate in the development of thymic lymphomas in mice. Oncogene 16:2965–2974. doi:10.1038/sj.onc.1201854

    Article  PubMed  CAS  Google Scholar 

  10. Seldin DC, Landesman-Bollag E, Farago M, Currier N, Lou D, Dominguez I (2005) CK2 as a positive regulator of Wnt signalling and tumourigenesis. Mol Cell Biochem 274:63–67. doi:10.1007/s11010-005-3078-0

    Article  PubMed  CAS  Google Scholar 

  11. Seldin DC, Leder P (1995) Casein kinase II alpha transgene-induced murine lymphoma: relation to theileriosis in cattle. Science 267:894–897. doi:10.1126/science.7846532

    Article  PubMed  CAS  Google Scholar 

  12. Kim JS, Eom JI, Cheong JW, Choi AJ, Lee JK, Yang WI et al (2007) Protein kinase CK2alpha as an unfavorable prognostic marker and novel therapeutic target in acute myeloid leukemia. Clin Cancer Res 13:1019–1028. doi:10.1158/1078-0432.CCR-06-1602

    Article  PubMed  CAS  Google Scholar 

  13. Mishra S, Pertz V, Zhang B, Kaur P, Shimada H, Groffen J et al (2007) Treatment of P190 Bcr/Abl lymphoblastic leukemia cells with inhibitors of the serine/threonine kinase CK2. Leukemia 21:178–180. doi:10.1038/sj.leu.2404460

    Article  PubMed  CAS  Google Scholar 

  14. Piazza FA, Ruzzene M, Gurrieri C, Montini B, Bonanni L, Chioetto G et al (2006) Multiple myeloma cell survival relies on high activity of protein kinase CK2. Blood 108:1698–1707. doi:10.1182/blood-2005-11-013672

    Article  PubMed  CAS  Google Scholar 

  15. Ruzzene M, Penzo D, Pinna LA (2002) Protein kinase CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) induces apoptosis and caspase-dependent degradation of haematopoietic lineage cell-specific protein 1 (HS1) in Jurkat cells. Biochem J 364:41–47

    Google Scholar 

  16. Di Maira G, Salvi M, Arrigoni G, Marin O, Sarno S, Brustolon F et al (2005) Protein kinase CK2 phosphorylates and upregulates Akt/PKB. Cell Death Differ 12:668–677. doi:10.1038/sj.cdd.4401604

    Article  PubMed  CAS  Google Scholar 

  17. Loizou JI, El-Khamisy SF, Zlatanou A, Moore DJ, Chan DW, Qin J et al (2004) The protein kinase CK2 facilitates repair of chromosomal DNA single-strand breaks. Cell 117:17–28. doi:10.1016/S0092-8674(04)00206-5

    Article  PubMed  CAS  Google Scholar 

  18. Scaglioni PP, Yung TM, Cai LF, Erdjument-Bromage H, Kaufman AJ, Singh B et al (2006) A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126:269–283. doi:10.1016/j.cell.2006.05.041

    Article  PubMed  CAS  Google Scholar 

  19. Salvi M, Sarno S, Marin O, Meggio F, Itarte E, Pinna LA (2006) Discrimination between the activity of protein kinase CK2 holoenzyme and its catalytic subunits. FEBS Lett 580:3948–3952. doi:10.1016/j.febslet.2006.06.031

    Article  PubMed  CAS  Google Scholar 

  20. Niefind K, Guerra B, Ermakowa I, Issinger OG (2001) Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J 20:5320–5331. doi:10.1093/emboj/20.19.5320

    Article  PubMed  CAS  Google Scholar 

  21. De Moliner E, Moro S, Sarno S, Zagotto G, Zanotti G, Pinna LA et al (2003) Inhibition of protein kinase CK2 by anthraquinone-related compounds. A structural insight. J Biol Chem 278:1831–1836. doi:10.1074/jbc.M209367200

    Article  PubMed  Google Scholar 

  22. Battistutta R, Sarno S, Zanotti G (2005) Inhibitors of protein kinase CK2: structural aspects. In: Pinna LA, Cohen PTW (eds) Inhibitors of protein kinases and protein phosphatases. Handbook of experimental pharmacology, vol 167. Springer, Berlin, pp 125–155

    Chapter  Google Scholar 

  23. Battistutta R, De Moliner E, Sarno S, Zanotti G, Pinna LA (2001) Structural features underlying selective inhibition of protein kinase CK2 by ATP site-directed tetrabromo-2-benzotriazole. Protein Sci 10:2200–2206. doi:10.1110/ps.19601

    Google Scholar 

  24. Niefind K, Putter M, Guerra B, Issinger OG, Schomburg D (1999) GTP plus water mimic ATP in the active site of protein kinase CK2. Nat Struct Biol 6:1100–1103. doi:10.1038/70033

    Article  PubMed  CAS  Google Scholar 

  25. Battistutta R, Sarno S, De Moliner E, Papinutto E, Zanotti G, Pinna LA (2000) The replacement of ATP by the competitive inhibitor emodin induces conformational modifications in the catalytic site of protein kinase CK2. J Biol Chem 275:29618–29622. doi:10.1074/jbc.M004257200

    Article  PubMed  CAS  Google Scholar 

  26. Sarno S, Vaglio P, Meggio F, Issinger OG, Pinna LA (1996) Protein kinase CK2 mutants defective in substrate recognition. Purification and kinetic analysis. J Biol Chem 271:10595–10601. doi:10.1074/jbc.271.18.10595

    Article  PubMed  CAS  Google Scholar 

  27. Battistutta R, Mazzorana M, Cendron L, Bortolato A, Sarno S, Kazimierczuk Z et al (2007) The ATP-binding site of protein kinase CK2 holds a positive electrostatic area and conserved water molecules. Chembiochem 8:1804–1809. doi:10.1002/cbic.200700307

    Article  PubMed  CAS  Google Scholar 

  28. Battistutta R, Mazzorana M, Sarno S, Kazimierczuk Z, Zanotti G, Pinna LA (2005) Inspecting the structure-activity relationship of protein kinase CK2 inhibitors derived from tetrabromo-benzimidazole. Chem Biol 12:1211–1219. doi:10.1016/j.chembiol.2005.08.015

    Article  PubMed  CAS  Google Scholar 

  29. Chilin A, Battistutta R, Bortolato A, Cozza G, Zanatta S, Poletto G et al (2008) Coumarin as attractive casein kinase 2 (CK2) inhibitor scaffold: an integrate approach to elucidate the putative binding motif and explain structure-activity relationships. J Med Chem 51:752–759. doi:10.1021/jm070909t

    Article  PubMed  CAS  Google Scholar 

  30. De Moliner E, Brown NR, Johnson LN (2003) Alternative binding modes of an inhibitor to two different kinases. Eur J Biochem 270:3174–3181. doi:10.1046/j.1432-1033.2003.03697.x

    Article  PubMed  Google Scholar 

  31. Sarno S, Reddy H, Meggio F, Ruzzene M, Davies SP, Donella-Deana A et al (2001) Selectivity of 4, 5, 6, 7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 (‘casein kinase-2’). FEBS Lett 496:44–48. doi:10.1016/S0014-5793(01)02404-8

    Article  PubMed  CAS  Google Scholar 

  32. Sarno S, Salvi M, Battistutta R, Zanotti G, Pinna LA (2005) Features and potentials of ATP-site directed CK2 inhibitors. Biochim Biophys Acta 1754:263–270

    PubMed  CAS  Google Scholar 

  33. Sarno S, Moro S, Meggio F, Zagotto G, Dal Ben D, Ghisellini P et al (2002) Toward the rational design of protein kinase casein kinase-2 inhibitors. Pharmacol Ther 93:159–168. doi:10.1016/S0163-7258(02)00185-7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from AIRC to L. A. Pinna and from EU (Integrated EU Project “Prokinase research” LSHB-CT-2004-503467).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Battistutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzorana, M., Pinna, L.A. & Battistutta, R. A structural insight into CK2 inhibition. Mol Cell Biochem 316, 57–62 (2008). https://doi.org/10.1007/s11010-008-9822-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9822-5

Keywords

Navigation