Skip to main content
Log in

Circulatory lipid transport: lipoprotein assembly and function from an evolutionary perspective

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Circulatory transport of neutral lipids (fat) in animals relies on members of the large lipid transfer protein (LLTP) superfamily, including mammalian apolipoprotein B (apoB) and insect apolipophorin II/I (apoLp-II/I). Latter proteins, which constitute the structural basis for the assembly of various lipoproteins, acquire lipids through microsomal triglyceride transfer protein (MTP)—another LLTP family member—and bind them by means of amphipathic structures. Comparative research reveals that LLTPs have evolved from the earliest animals and additionally highlights the structural and functional adaptations in these lipid carriers. For instance, in contrast to mammalian apoB, the insect apoB homologue, apoLp-II/I, is post-translationally cleaved by a furin, resulting in their appearance of two non-exchangeable apolipoproteins in the insect low-density lipoprotein (LDL) homologue, high-density lipophorin (HDLp). An important difference between mammalian and insect lipoproteins relates to the mechanism of lipid delivery. Whereas in mammals, endocytic uptake of lipoprotein particles, mediated via members of the LDL receptor (LDLR) family, results in their degradation in lysosomes, the insect HDLp was shown to act as a reusable lipid shuttle which is capable of reloading lipid. Although the recent identification of a lipophorin receptor (LpR), a homologue of LDLR, reveals that endocytic uptake of HDLp may constitute an additional mechanism of lipid delivery, the endocytosed lipoprotein appears to be recycled in a transferrin-like manner. Binding studies indicate that the HDLp–LpR complex, in contrast to the LDL–LDLR complex, is resistant to dissociation at endosomal pH as well as by treatment with EDTA mimicking the drop in Ca2+ concentration in the endosome. This remarkable stability of the ligand–receptor complex may provide a crucial key to the recycling mechanism. Based on the binding and dissociation capacities of mutant and hybrid receptors, the specific binding interaction of the ligand-binding domain of the receptor with HDLp was characterized. These structural similarities and functional adaptations of the lipid transport systems operative in mammals and insects are discussed from an evolutionary perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Brown MS, Goldstein JL (1979) Receptor-mediated endocytosis: insights from the lipoprotein receptor system. Proc Natl Acad Sci USA 76:3330–3337. doi:10.1073/pnas.76.7.3330

    PubMed  CAS  Google Scholar 

  2. Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47. doi:10.1126/science.3513311

    PubMed  CAS  Google Scholar 

  3. Goldstein JL, Brown MS, Anderson RG et al (1985) Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol 1:1–39. doi:10.1146/annurev.cb.01.110185.000245

    PubMed  CAS  Google Scholar 

  4. Gotto AM Jr (1990) Interrelationship of triglycerides with lipoproteins and high-density lipoproteins. Am J Cardiol 66:0A–23A

    Google Scholar 

  5. Havel RJ (1987) Lipid transport function of lipoproteins in blood plasma. Am J Physiol 253:E1–E5

    PubMed  CAS  Google Scholar 

  6. Herz J, Bock HH (2002) Lipoprotein receptors in the nervous system. Annu Rev Biochem 71:405–434. doi:10.1146/annurev.biochem.71.110601.135342

    PubMed  CAS  Google Scholar 

  7. Hussain MM, Strickland DK, Bakillah A (1999) The mammalian low-density lipoprotein receptor family. Annu Rev Nutr 19:141–172. doi:10.1146/annurev.nutr.19.1.141

    PubMed  CAS  Google Scholar 

  8. Jeon H, Blacklow SC (2005) Structure and physiologic function of the low-density lipoprotein receptor. Annu Rev Biochem 74:535–562. doi:10.1146/annurev.biochem.74.082803.133354

    PubMed  CAS  Google Scholar 

  9. Mahley RW, Innerarity TL (1983) Lipoprotein receptors and cholesterol homeostasis. Biochim Biophys Acta 737:197–222

    PubMed  CAS  Google Scholar 

  10. Tulenko TN, Sumner AE (2002) The physiology of lipoproteins. J Nucl Cardiol 9:638–649. doi:10.1067/mnc.2002.128959

    PubMed  Google Scholar 

  11. Willnow TE (1999) The low-density lipoprotein receptor gene family: multiple roles in lipid metabolism. J Mol Med 77:306–315. doi:10.1007/s001090050356

    PubMed  CAS  Google Scholar 

  12. Zannis VI, Chroni A, Kypreos KE et al (2004) Probing the pathways of chylomicron and HDL metabolism using adenovirus-mediated gene transfer. Curr Opin Lipidol 15:151–166. doi:10.1097/00041433-200404000-00008

    PubMed  CAS  Google Scholar 

  13. Arrese EL, Canavoso LE, Jouni ZE et al (2001) Lipid storage and mobilization in insects: current status and future directions. Insect Biochem Mol Biol 31:7–17. doi:10.1016/S0965-1748(00)00102-8

    PubMed  CAS  Google Scholar 

  14. Canavoso LE, Jouni ZE, Karnas KJ et al (2001) Fat metabolism in insects. Annu Rev Nutr 21:23–46. doi:10.1146/annurev.nutr.21.1.23

    PubMed  CAS  Google Scholar 

  15. Van der Horst DJ, Van Marrewijk WJA, Diederen JHB (2001) Adipokinetic hormones of insect: release, signal transduction, and responses. Int Rev Cytol 211:179–240. doi:10.1016/S0074-7696(01)11019-3

    PubMed  Google Scholar 

  16. Van der Horst DJ, Van Hoof D, Van Marrewijk WJA et al (2002) Alternative lipid mobilization: the insect shuttle system. Mol Cell Biochem 239:113–119. doi:10.1023/A:1020541010547

    PubMed  Google Scholar 

  17. Van der Horst DJ, Ryan RO (2005) Lipid transport. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 4. Elsevier, Amsterdam, pp 225–246

    Google Scholar 

  18. Van der Horst DJ (2003) Insect adipokinetic hormones: release and integration of flight energy metabolism. Comp Biochem Physiol B 136:217–226. doi:10.1016/S1096-4959(03)00151-9

    PubMed  Google Scholar 

  19. Ryan RO, Van der Horst DJ (2000) Lipid transport biochemistry and its role in energy production. Annu Rev Entomol 45:233–260. doi:10.1146/annurev.ento.45.1.233

    PubMed  CAS  Google Scholar 

  20. Narayanaswami V, Ryan RO (2000) Molecular basis of exchangeable apolipoprotein function. Biochim Biophys Acta 1483:15–36

    PubMed  CAS  Google Scholar 

  21. Weers PMM, Ryan RO (2003) Apolipophorin III: a lipid-triggered molecular switch. Insect Biochem Mol Biol 33:1249–1260. doi:10.1016/j.ibmb.2003.06.013

    PubMed  CAS  Google Scholar 

  22. Weers PMM, Ryan RO (2006) Apolipophorin III: role model apolipophorin. Insect Biochem Mol Biol 36:231–240. doi:10.1016/j.ibmb.2006.01.001

    PubMed  CAS  Google Scholar 

  23. Babin PJ, Bogerd J, Kooiman FP et al (1999) Apolipophorin II/I, apolipoprotein B, vitellogenin, and microsomal triglyceride transfer protein genes are derived from a common ancestor. J Mol Evol 49:150–160. doi:10.1007/PL00006528

    PubMed  CAS  Google Scholar 

  24. Mann CJ, Anderson TA, Read J et al (1999) The structure of vitellogenin provides a molecular model for the assembly and secretion of atherogenic lipoproteins. J Mol Biol 285:391–408. doi:10.1006/jmbi.1998.2298

    PubMed  CAS  Google Scholar 

  25. Smolenaars MMW, Madsen O, Rodenburg KW et al (2007) Molecular diversity and evolution of the large lipid transfer protein superfamily. J Lipid Res 48:489–502. doi:10.1194/jlr.R600028-JLR200

    PubMed  CAS  Google Scholar 

  26. Valentijn KM, Koning R, Derks Y et al (2004) Preliminary three-dimensional model of insect lipoprotein HDLp by using electron microscopy and X-ray crystallography. In: Anderson IM, Price R, Hall E, Clark E, McKernan S (eds) Proceedings of microscopy and microanalysis, vol 10. Savannah, GA, USA, p 1514

    Google Scholar 

  27. Van Antwerpen R, Linnemans WA, Van der Horst DJ et al (1988) Immunocytochemical localization of lipophorins in the flight muscles of the migratory locust (Locusta migratoria) at rest and during flight. Cell Tissue Res 252:661–668. doi:10.1007/BF00216654

    PubMed  Google Scholar 

  28. Orlova EV, Sherman MB, Chiu W et al (1999) Three-dimensional structure of low density lipoproteins by electron cryomicroscopy. Proc Natl Acad Sci USA 96:8420–8425. doi:10.1073/pnas.96.15.8420

    PubMed  CAS  Google Scholar 

  29. Dantuma NP, Potters M, De Winther MP et al (1999) An insect homolog of the vertebrate very low density lipoprotein receptor mediates endocytosis of lipophorins. J Lipid Res 40:973–978

    PubMed  CAS  Google Scholar 

  30. Van Hoof D, Rodenburg KW, Van der Horst DJ (2002) Insect lipoprotein follows a transferrin-like recycling pathway that is mediated by the insect LDL receptor homologue. J Cell Sci 115:4001–4012. doi:10.1242/jcs.00113

    PubMed  Google Scholar 

  31. Weers PMM, Van Marrewijk WJA, Beenakkers AMT et al (1993) Biosynthesis of locust lipophorin. Apolipophorins I and II originate from a common precursor. J Biol Chem 268:4300–4303

    PubMed  CAS  Google Scholar 

  32. Bogerd J, Babin PJ, Kooiman FP et al (2000) Molecular characterization and gene expression in the eye of the apolipophorin II/I precursor from Locusta migratoria. J Comp Neurol 427:546–558. doi:10.1002/1096-9861(20001127)427:4<546::AID-CNE4>3.0.CO;2-H

    PubMed  CAS  Google Scholar 

  33. Kutty RK, Kutty G, Kambadur R et al (1996) Molecular characterization and developmental expression of a retinoid- and fatty acid-binding glycoprotein from Drosophila. A putative lipophorin. J Biol Chem 271:20641–20649. doi:10.1074/jbc.271.34.20641

    PubMed  CAS  Google Scholar 

  34. Sundermeyer K, Hendricks JK, Prasad SV et al (1996) The precursor protein of the structural apolipoproteins of lipophorin: cDNA and deduced amino acid sequence. Insect Biochem Mol Biol 26:735–738. doi:10.1016/S0965-1748(96)00060-4

    PubMed  CAS  Google Scholar 

  35. Van der Horst DJ, Weers PMM, Van Marrewijk WJA (1993) Lipoproteins and lipid transport. In: Stanley-Samuelson DW, Nelson DR (eds) Insect lipids: chemistry, biochemistry, and biology. University of Nebraska Press, Lincoln, NE, pp 1–24

    Google Scholar 

  36. Van Heusden MC, Thompson F, Dennis J (1998) Biosynthesis of Aedes aegypti lipophorin and gene expression of its apolipoproteins. Insect Biochem Mol Biol 28:733–738. doi:10.1016/S0965-1748(98)00068-X

    PubMed  Google Scholar 

  37. Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195. doi:10.1126/science.287.5461.2185

    PubMed  Google Scholar 

  38. Holt RA, Subramanian GM, Halpern A et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149. doi:10.1126/science.1076181

    PubMed  CAS  Google Scholar 

  39. Manchekar M, Richardson PE, Forte TM et al (2004) Apolipoprotein B-containing lipoprotein particle assembly: lipid capacity of the nascent lipoprotein particle. J Biol Chem 279:39757–39766. doi:10.1074/jbc.M406302200

    PubMed  CAS  Google Scholar 

  40. Richardson PE, Manchekar M, Dashti N et al (2005) Assembly of lipoprotein particles containing apolipoprotein-B: structural model for the native lipoprotein particle. Biophys J 88:2789–2800. doi:10.1529/biophysj.104.046235

    PubMed  CAS  Google Scholar 

  41. Segrest JP, Jones MK, Dashti N (1999) N-terminal domain of apolipoprotein B has structural homology to lipovitellin and microsomal triglyceride transfer protein: a “lipid pocket” model for self-assembly of apoB-containing lipoprotein particles. J Lipid Res 40:1401–1416

    PubMed  CAS  Google Scholar 

  42. Segrest JP, Jones MK, De Loof H et al (2001) Structure of apolipoprotein B-100 in low density lipoproteins. J Lipid Res 42:1346–1367

    PubMed  CAS  Google Scholar 

  43. Smolenaars MMW, Kasperaitis MAM, Richardson PE et al (2005) Biosynthesis and secretion of insect lipoprotein: involvement of furin in cleavage of the apoB homolog, apolipophorin-II/I. J Lipid Res 46:412–421. doi:10.1194/jlr.M400374-JLR200

    PubMed  CAS  Google Scholar 

  44. Rodenburg KW, Van der Horst DJ (2005) Lipoprotein-mediated lipid transport in insects: analogy to the mammalian lipid carrier system and novel concepts for the functioning of LDL receptor family members. Biochim Biophys Acta 1736:10–29

    PubMed  CAS  Google Scholar 

  45. Shelness GS, Hou L, Ledford AS et al (2003) Identification of the lipoprotein initiating domain of apolipoprotein B. J Biol Chem 278:44702–44707. doi:10.1074/jbc.M307562200

    PubMed  CAS  Google Scholar 

  46. Thompson JR, Banaszak LJ (2002) Lipid–protein interactions in lipovitellin. Biochemistry 41:9398–9409. doi:10.1021/bi025674w

    PubMed  CAS  Google Scholar 

  47. Hussain MM, Kedees MH, Singh K et al (2001) Signposts in the assembly of chylomicrons. Front Biosci 6:D320–D331. doi:10.2741/Hussain

    PubMed  CAS  Google Scholar 

  48. Shelness GS, Sellers JA (2001) Very-low-density lipoprotein assembly and secretion. Curr Opin Lipidol 12:51–157. doi:10.1097/00041433-200104000-00008

    Google Scholar 

  49. Ledford AS, Weinberg RB, Cook VR et al (2006) Self-association and lipid binding properties of the lipoprotein initiating domain of apolipoprotein B. J Biol Chem 281:8871–8876. doi:10.1074/jbc.M507657200

    PubMed  CAS  Google Scholar 

  50. Sellers JA, Hou L, Athar H et al (2003) A Drosophila microsomal triglyceride transfer protein homolog promotes the assembly and secretion of human apolipoprotein B: implications for human and insect transport and metabolism. J Biol Chem 278:20367–20373. doi:10.1074/jbc.M300271200

    PubMed  CAS  Google Scholar 

  51. Molloy SS, Anderson ED, Jean F et al (1999) Bi-cycling the furin pathway: from TGN localization to pathogen activation and embryogenesis. Trends Cell Biol 9:28–35. doi:10.1016/S0962-8924(98)01382-8

    PubMed  CAS  Google Scholar 

  52. Sappington TW, Raikhel AS (1998) Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochem Mol Biol 28:277–300. doi:10.1016/S0965-1748(97)00110-0

    PubMed  CAS  Google Scholar 

  53. Segrest JP, Jones MK, Mishra VK et al (1994) ApoB-100 has a pentapartite structure composed of three amphipathic alpha-helical domains alternating with two amphipathic beta-strand domains. Detection by the computer program LOCATE. Arterioscler Thromb 14:1674–1685

    PubMed  CAS  Google Scholar 

  54. Segrest JP, Jones MK, Mishra VK et al (1998) Apolipoprotein B-100: conservation of lipid-associating amphipathic secondary structural motifs in nine species of vertebrates. J Lipid Res 39:85–102

    PubMed  CAS  Google Scholar 

  55. Smolenaars MMW, De Morrée A, Kerver J et al (2007) Insect lipoprotein biogenesis depends on an amphipathic β cluster in apolipophorin-II/I and is stimulated by microsomal triglyceride transfer protein. J Lipid Res 48:1955–1965. doi:10.1194/jlr.M600434-JLR200

    PubMed  CAS  Google Scholar 

  56. Marchler-Bauer A, Anderson JB, Cherukuri PF et al (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33:D192–D196. doi:10.1093/nar/gki069

    PubMed  CAS  Google Scholar 

  57. Sellers JA, Hou L, Schoenberg DR et al (2005) Microsomal triglyceride transfer protein promotes the secretion of Xenopus laevis vitellogenin A1. J Biol Chem 280:13902–13905. doi:10.1074/jbc.M500769200

    PubMed  CAS  Google Scholar 

  58. Shelness GS, Ledford AS (2005) Evolution and mechanism of apolipoprotein B-containing lipoprotein assembly. Curr Opin Lipidol 16:325–332. doi:10.1097/01.mol.0000169353.12772.eb

    PubMed  CAS  Google Scholar 

  59. Avarre J-C, Lubzens E, Babin PJ (2007) Apolipocrustacein, formerly vitellogenin, is the major egg yolk precursor protein in decapod crustaceans and is homologous to insect apolipophorin II/I and vertebrate apolipoprotein B. BMC Evol Biol 7:3. doi:10.1186/1471-2148-7-3

    PubMed  Google Scholar 

  60. Anderson TA, Levitt DG, Banaszak LJ (1998) The structural basis of lipid interactions in lipovitellin, a soluble lipoprotein. Structure 6:895–909. doi:10.1016/S0969-2126(98)00091-4

    PubMed  CAS  Google Scholar 

  61. Rava P, Ojakian GK, Shelness GS et al (2006) Phospholipid transfer activity of microsomal triacylglycerol transfer protein is sufficient for the assembly and secretion of apolipoprotein B lipoproteins. J Biol Chem 281:11019–11027. doi:10.1074/jbc.M512823200

    PubMed  CAS  Google Scholar 

  62. Dantuma NP, Pijnenburg MAP, Diederen JHB et al (1997) Developmental down-regulation of receptor-mediated endocytosis of an insect lipoprotein. J Lipid Res 38:254–265

    PubMed  CAS  Google Scholar 

  63. Cheon H-M, Seo S-J, Sun J et al (2001) Molecular characterization of the VLDL receptor homolog mediating binding of lipophorin in oocyte of the mosquito Aedes aegypti. Insect Biochem Mol Biol 31:753–760. doi:10.1016/S0965-1748(01)00068-6

    PubMed  CAS  Google Scholar 

  64. Ciudad L, Bellés X, Piulachs M-D (2007) Structural and RNAi characterization of the German cockroach lipophorin receptor, and the evolutionary relationships of lipoprotein receptors. BMC Mol Biol 8:53. doi:10.1186/1471-2199-8-53

    PubMed  Google Scholar 

  65. Gopalapillai R, Kadono-Okuda K, Tsuchida K et al (2006) Lipophorin receptor of Bombyx mori: cDNA cloning, genomic structure, alternative splicing, and isolation of a new isoform. J Lipid Res 47:1005–1013. doi:10.1194/jlr.M500462-JLR200

    PubMed  CAS  Google Scholar 

  66. Lee CS, Han JH, Lee SM et al (2003) Wax moth, Galleria mellonella fat body receptor for high-density lipophorin (HDLp). Arch Insect Biochem Physiol 54:14–24. doi:10.1002/arch.10095

    PubMed  CAS  Google Scholar 

  67. Lee CS, Han JH, Kim BS et al (2003) Wax moth, Galleria mellonella, high density lipophorin receptor: alternative splicing, tissue-specific expression, and developmental regulation. Insect Biochem Mol Biol 33:761–771. doi:10.1016/S0965-1748(03)00066-3

    PubMed  CAS  Google Scholar 

  68. Seo S-J, Cheon H-M, Sun J et al (2003) Tissue- and stage-specific expression of two lipophorin receptor variants with seven and eight ligand-binding repeats in the adult mosquito. J Biol Chem 278:41954–41962. doi:10.1074/jbc.M308200200

    PubMed  CAS  Google Scholar 

  69. Van Hoof D, Rodenburg KW, Van der Horst DJ (2003) Lipophorin receptor-mediated lipoprotein endocytosis in insect fat body cells. J Lipid Res 44:1431–1440. doi:10.1194/jlr.M300022-JLR200

    PubMed  Google Scholar 

  70. Van Hoof D, Rodenburg KW, Van der Horst DJ (2005) Intracellular fate of LDL receptor family members depends on the cooperation between their ligand-binding and EGF domains. J Cell Sci 118:1309–1320. doi:10.1242/jcs.01725

    PubMed  Google Scholar 

  71. Sappington TW, Raikhel AS (1998) Ligand-binding domains in vitellogenin receptors and other LDL-receptor family members share a common ancestral ordering of cysteine-rich repeats. J Mol Evol 46:476–487. doi:10.1007/PL00006328

    PubMed  CAS  Google Scholar 

  72. Rodenburg KW, Smolenaars MMW, Van Hoof D et al (2006) Sequence analysis of the non-recurring C-terminal domains shows that insect lipoprotein receptors constitute a distinct group of LDL receptor family members. Insect Biochem Mol Biol 36:250–263. doi:10.1016/j.ibmb.2006.01.003

    PubMed  CAS  Google Scholar 

  73. May P, Bock HH, Herz J (2003) Integration of endocytosis and signal transduction by lipoprotein receptors. Sci STKE 2003:PE12. doi:10.1126/stke.2003.176.pe12

  74. May P, Bock HH, Nimpf J et al (2003) Differential glycosylation regulates processing of lipoprotein receptors by gamma-secretase. J Biol Chem 278:37386–37392. doi:10.1074/jbc.M305858200

    PubMed  CAS  Google Scholar 

  75. Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24:1–29. doi:10.1146/annurev.neuro.24.1.1

    PubMed  CAS  Google Scholar 

  76. Ghosh RN, Gelman DL, Maxfield FR (1994) Quantification of low density lipoprotein and transferrin endocytic sorting HEp2 cells using confocal microscopy. J Cell Sci 107:2177–2189

    PubMed  CAS  Google Scholar 

  77. Maxfield FR, McGraw TE (2004) Endocytic recycling. Nat Rev Mol Cell Biol 5:121–132. doi:10.1038/nrm1315

    PubMed  CAS  Google Scholar 

  78. Van Hoof D, Rodenburg KW, Van der Horst DJ (2005) Receptor-mediated endocytosis and intracellular trafficking of lipoproteins and transferrin in insect cells. Insect Biochem Mol Biol 35:117–128. doi:10.1016/j.ibmb.2004.09.009

    PubMed  Google Scholar 

  79. Dantuma NP, Pijnenburg MAP, Diederen JHB et al (1998) Electron microscopic visualization of receptor-mediated endocytosis of DiI-labeled lipoproteins by diaminobenzidine photoconversion. J Histochem Cytochem 46:1085–1089

    PubMed  CAS  Google Scholar 

  80. Dantuma NP, Pijnenburg MAP, Diederen JHB et al (1998) Multiple interactions between insect lipoproteins and fat body cells: extracellular trapping and endocytic trafficking. J Lipid Res 39:1877–1888

    PubMed  CAS  Google Scholar 

  81. Roosendaal SD, Kerver J, Schipper M et al (2008) The complex of the insect LDL receptor homolog, lipophorin receptor, LpR, and its lipoprotein ligand does not dissociate under endosomal conditions. FEBS J 275:1751–1766. doi:10.1111/j.1742-4658.2008.06334.x

    PubMed  CAS  Google Scholar 

  82. Gerasimenko JV, Tepikin AV, Petersen OH et al (1998) Calcium uptake via endocytosis with rapid release from acidifying endosomes. Curr Biol 8:1335–1338. doi:10.1016/S0960-9822(07)00565-9

    PubMed  CAS  Google Scholar 

  83. Innerarity TL (2002) Structural biology: LDL receptor’s beta-propeller displaces LDL. Science 298:2337–2339. doi:10.1126/science.1080669

    PubMed  CAS  Google Scholar 

  84. Rudenko G, Henry L, Henderson K et al (2002) Structure of the LDL receptor extracellular domain at endosomal pH. Science 298:2353–2358. doi:10.1126/science.1078124

    PubMed  CAS  Google Scholar 

  85. Beglova N, Jeon H, Fisher C et al (2004) Cooperation between fixed and low pH-inducible interfaces controls lipoprotein release by the LDL receptor. Mol Cell 16:281–292. doi:10.1016/j.molcel.2004.09.038

    PubMed  CAS  Google Scholar 

  86. Beglova N, Jeon H, Fisher C et al (2004) Structural features of the low-density lipoprotein receptor facilitating ligand binding and release. Biochem Soc Trans 32:721–723. doi:10.1042/BST0320721

    PubMed  CAS  Google Scholar 

  87. Boswell EJ, Jeon H, Blacklow SC et al (2004) Global defects in the expression and function of the low density lipoprotein receptor (LDLR) associated with two familial hypercholesterolemia mutations resulting in misfolding of the LDLR epidermal growth factor-AB pair. J Biol Chem 279:30611–30621. doi:10.1074/jbc.M401412200

    PubMed  CAS  Google Scholar 

  88. Fisher C, Beglova N, Blacklow SC (2006) Structure of an LDLR-RAP complex reveals a general mode for ligand recognition by lipoprotein receptors. Mol Cell 22:277–283. doi:10.1016/j.molcel.2006.02.021

    PubMed  CAS  Google Scholar 

  89. Li A, Sadasivam M, Ding JL (2003) Receptor-ligand interaction between vitellogenin receptor (VtgR) and vitellogenin (Vtg), implications on low density lipoprotein receptor and apolipoprotein B/E. The first three ligand-binding repeats of VtgR interact with the amino-terminal region of Vtg. J Biol Chem 278:2799–2806. doi:10.1074/jbc.M205067200

    PubMed  CAS  Google Scholar 

  90. Nielsen KL, Holtet TL, Etzerodt M et al (1996) Identification of residues in alpha-macroglobulins important for binding to the alpha2-macroglobulin receptor/low density lipoprotein receptor-related protein. J Biol Chem 271:12909–12912. doi:10.1074/jbc.271.22.12909

    PubMed  CAS  Google Scholar 

  91. Panakova D, Sprong H, Marois E et al (2005) Lipoprotein particles are required for Hedgehog and Wingless signaling. Nature 435:58–65. doi:10.1038/nature03504

    PubMed  CAS  Google Scholar 

  92. Seto ES, Bellen HJ (2004) The ins and outs of Wingless signaling. Trends Cell Biol 14:45–53. doi:10.1016/j.tcb.2003.11.004

    PubMed  CAS  Google Scholar 

  93. Cohen MM Jr (2003) The hedgehog signaling network. Am J Med Genet A 123:5–28. doi:10.1002/ajmg.a.20495

    Google Scholar 

  94. Bijlsma MF, Peppelenbosch MP, Spek AC (2006) Hedgehog morphogen in cardiovascular research. Circulation 114:1985–1991. doi:10.1161/CIRCULATIONAHA.106.619213

    PubMed  CAS  Google Scholar 

  95. Neumann S, Harterink M, Sprong H (2007) Hitch-hiking between cells on lipoprotein particles. Traffic 8:331–338. doi:10.1111/j.1600-0854.2006.00532.x

    PubMed  CAS  Google Scholar 

  96. Tacken PJ, Teusink B, Jong MC et al (2000) LDL receptor deficiency unmasks altered VLDL triglyceride metabolism in VLDL receptor transgenic and knockout mice. J Lipid Res 41:2055–2062

    PubMed  CAS  Google Scholar 

  97. Wyne KL, Pathak K, Seabra MC et al (1996) Expression of the VLDL receptor in endothelial cells. Arterioscler Thromb Vasc Biol 16:407–415

    PubMed  CAS  Google Scholar 

  98. Gross DN, Miyoshi H, Hosaka T et al (2006) Dynamics of lipid droplet-associated proteins during hormonally stimulated lipolysis in engineered adipocytes: stabilization and lipid droplet binding of adipocyte differentiation-related protein/adipophilin. Mol Endocrinol 20:459–466. doi:10.1210/me.2005-0323

    PubMed  CAS  Google Scholar 

  99. Londos C, Brasaemle DL, Schultz CJ et al (1999) Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Cell Dev Biol 10:51–58. doi:10.1006/scdb.1998.0275

    CAS  Google Scholar 

  100. Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7:373–378. doi:10.1038/nrm1912

    PubMed  CAS  Google Scholar 

  101. Grönke S, Beller M, Fellert S et al (2003) Control of fat storage by a Drosophila PAT domain protein. Curr Biol 13:603–606. doi:10.1016/S0960-9822(03)00175-1

    PubMed  Google Scholar 

  102. Grönke S, Mildner A, Fellert S et al (2005) Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab 1:323–330. doi:10.1016/j.cmet.2005.04.003

    PubMed  Google Scholar 

  103. Grönke S, Müller G, Hirsch J et al (2007) Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol 5:e137. doi:10.1371/journal.pbio.0050137

    PubMed  Google Scholar 

  104. Kulkarni MM, Perrimon N (2005) Super-size flies. Cell Metab 1:288–290. doi:10.1016/j.cmet.2005.04.008

    PubMed  CAS  Google Scholar 

  105. Ruden DM, De Luca M, Garfinkel MD et al (2005) Drosophila nutrigenomics can provide clues to human gene-nutrient interactions. Annu Rev Nutr 25:499–522. doi:10.1146/annurev.nutr.25.050304.092708

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dick J. Van der Horst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van der Horst, D.J., Roosendaal, S.D. & Rodenburg, K.W. Circulatory lipid transport: lipoprotein assembly and function from an evolutionary perspective. Mol Cell Biochem 326, 105–119 (2009). https://doi.org/10.1007/s11010-008-0011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-0011-3

Keywords

Navigation