Abstract
Hypertriglyceridemia is a common complex metabolic trait that is associated with increased atherosclerosis risk, presence of the metabolic syndrome and, with extreme elevation, increased risk of pancreatitis. Hierarchical cluster analysis using clinical and biochemical features of the Frederickson hyperlipoproteinemia types can generate hypotheses for molecular genetic studies. High throughput resequencing of individuals at the extremes of plasma triglyceride concentration has shown that both rare genetic variants with large effects and common genetic variants with moderate effects explain a relatively large proportion of variation. Very recent progress using high-density sets of genome-wide markers have identified additional genetic determinants of plasma triglyceride concentrations, albeit within largely normolipidemic subjects and with small effect sizes. Phenomic evaluation of patients with hypertriglyceridemia might help to clarify genotype–phenotype correlations and responses to interventions.



Similar content being viewed by others
References
Yuan G, Al-Shali KZ, Hegele RA (2007) Hypertriglyceridemia: its etiology, effects and treatment. CMAJ 176:1113–1120. doi:10.1503/cmaj.060963
Goldberg IJ (1996) Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res 37:693–707
Mahley RW, Ji ZS (1999) Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res 40:1–16
Breckenridge WC, Little JA, Steiner G et al (1978) Hypertriglyceridemia associated with deficiency of apolipoprotein C-II. N Engl J Med 298:1265–1273
Pennacchio LA, Olivier M, Hubacek JA et al (2001) An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 294:169–173. doi:10.1126/science.1064852
Beigneux AP, Davies BS, Gin P et al (2007) Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab 5:279–291. doi:10.1016/j.cmet.2007.02.002
Herz J (1993) The LDL-receptor-related protein—portrait of a multifunctional receptor. Curr Opin Lipidol 4:107–113. doi:10.1097/00041433-199304000-00006
Criqui MH, Heiss G, Cohn R et al (1993) Plasma triglyceride level and mortality from coronary heart disease. N Engl J Med 328:1220–1225. doi:10.1056/NEJM199304293281702
Hokanson JE, Austin MA (1996) Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk 3:213–219. doi:10.1097/00043798-199604000-00014
Bansal S, Buring JE, Rifai N et al (2007) Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 298:309–316. doi:10.1001/jama.298.3.309
Nordestgaard BG, Benn M, Schnohr P et al (2007) Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298:299–308. doi:10.1001/jama.298.3.299
Benlian P, De Gennes JL, Foubert L et al (1996) Premature atherosclerosis in patients with familial chylomicronemia caused by mutations in the lipoprotein lipase gene. N Engl J Med 335:848–854. doi:10.1056/NEJM199609193351203
Zilversmit DB (1979) Atherogenesis: a postprandial phenomenon. Circulation 60:473–485
Santamarina-Fojo S (1998) The familial chylomicronemia syndrome. Endocrinol Metab Clin North Am 27:551–567. doi:10.1016/S0889-8529(05)70025-6 viii
Hegele RA (2007) Phenomics, lamin A/C, and metabolic disease. J Clin Endocrinol Metab 92:4566–4568. doi:10.1210/jc.2007-2078
Hegele RA, Oshima J (2007) Phenomics and lamins: from disease to therapy. Exp Cell Res 313:2134–2143. doi:10.1016/j.yexcr.2007.03.023
Fredrickson DS (1993) Phenotyping. On reaching base camp (1950–1975). Circulation 87:III1–III15
Hegele RA (2001) Monogenic dyslipidemias: window on determinants of plasma lipoprotein metabolism. Am J Hum Genet 69:1161–1177. doi:10.1086/324647
Lee JC, Lusis AJ, Pajukanta P (2006) Familial combined hyperlipidemia: upstream transcription factor 1 and beyond. Curr Opin Lipidol 17:101–109. doi:10.1097/01.mol.0000217890.54875.13
Walden CC, Hegele RA (1994) Apolipoprotein E in hyperlipidemia. Ann Intern Med 120:1026–1036
Tall AR (2006) Protease variants, LDL, and coronary heart disease. N Engl J Med 354:1310–1312. doi:10.1056/NEJMe068026
Pollex RL, Hegele RA (2007) Genetic determinants of plasma lipoproteins. Nat Clin Pract Cardiovasc Med 4:600–609. doi:10.1038/ncpcardio1005
Reich DE, Lander ES (2001) On the allelic spectrum of human disease. Trends Genet 17:502–510. doi:10.1016/S0168-9525(01)02410-6
Wang WY, Barratt BJ, Clayton DG et al (2005) Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 6:109–118. doi:10.1038/nrg1522
Yang Q, Khoury MJ, Friedman J et al (2005) How many genes underlie the occurrence of common complex diseases in the population? Int J Epidemiol 34:1129–1137. doi:10.1093/ije/dyi130
Busch CP, Hegele RA (2000) Variation of candidate genes in triglyceride metabolism. J Cardiovasc Risk 7:309–315
Pennacchio LA, Olivier M, Hubacek JA et al (2002) Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum Mol Genet 11:3031–3038. doi:10.1093/hmg/11.24.3031
Kathiresan S, Melander O, Guiducci C et al (2008) Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 40:189–197. doi:10.1038/ng.75
Kooner JS, Chambers JC, Aguilar-Salinas CA et al (2008) Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nat Genet 40:149–151. doi:10.1038/ng.2007.61
Saxena R, Voight BF, Lyssenko V et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336. doi:10.1126/science.1142358
Willer CJ, Sanna S, Jackson AU et al (2008) Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40:161–169. doi:10.1038/ng.76
Hegele RA, Cao H, Harris SB et al (1999) The hepatic nuclear factor-1alpha G319S variant is associated with early-onset type 2 diabetes in Canadian Oji-Cree. J Clin Endocrinol Metab 84:1077–1082. doi:10.1210/jc.84.3.1077
Triggs-Raine BL, Kirkpatrick RD, Kelly SL et al (2002) HNF-1alpha G319S, a transactivation-deficient mutant, is associated with altered dynamics of diabetes onset in an Oji-Cree community. Proc Natl Acad Sci USA 99:4614–4619. doi:10.1073/pnas.062059799
McKinney J, Cao H, Behme MT et al (2003) Maturity-onset diabetes of the young (MODY) mutation in type 2 diabetes and latent autoimmune diabetes of the adult. Diabetes Care 26:3358–3359. doi:10.2337/diacare.26.12.3358-a
Cohen J, Pertsemlidis A, Kotowski IK et al (2005) Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 37:161–165. doi:10.1038/ng1509
Cohen JC, Kiss RS, Pertsemlidis A et al (2004) Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305:869–872. doi:10.1126/science.1099870
Romeo S, Pennacchio LA, Fu Y et al (2007) Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nat Genet 39:513–516. doi:10.1038/ng1984
Wang J, Cao H, Ban MR et al (2007) Resequencing genomic DNA of patients with severe hypertriglyceridemia (MIM 144650). Arterioscler Thromb Vasc Biol 27:2450–2455. doi:10.1161/ATVBAHA.107.150680
Wang J, Hegele RA (2007) Homozygous missense mutation (G56R) in glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1) in two siblings with fasting chylomicronemia (MIM 144650). Lipids Health Dis 6:23. doi:10.1186/1476-511X-6-23
Gin P, Beigneux AP, Davies B et al (2007) Normal binding of lipoprotein lipase, chylomicrons, and apo-AV to GPIHBP1 containing a G56R amino acid substitution. Biochim Biophys Acta 1771:1464–1468
Eichenbaum-Voline S, Olivier M, Jones EL et al (2004) Linkage and association between distinct variants of the APOA1/C3/A4/A5 gene cluster and familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol 24:167–174. doi:10.1161/01.ATV.0000099881.83261.D4
Evans D, Seedorf U, Beil FU (2005) Polymorphisms in the apolipoprotein A5 (APOA5) gene and type III hyperlipidemia. Clin Genet 68:369–372. doi:10.1111/j.1399-0004.2005.00510.x
Henneman P, Schaap FG, Havekes LM et al (2007) Plasma apoAV levels are markedly elevated in severe hypertriglyceridemia and positively correlated with the APOA5 S19W polymorphism. Atherosclerosis 193:129–134. doi:10.1016/j.atherosclerosis.2006.05.030
Hubacek JA, Horinek A, Skodova Z et al (2005) Hypertriglyceridemia: interaction between APOE and APOAV variants. Clin Chem 51:1311–1313. doi:10.1373/clinchem.2005.048439
Acknowledgments
RAH is supported by the Jacob J. Wolfe Distinguished Medical Research Chair, the Edith Schulich Vinet Canada Research Chair (Tier I) in Human Genetics, a Career Investigator award from the Heart and Stroke Foundation of Ontario (CI-5710), and operating grants from the Canadian Institutes for Health Research (FRN-13430 and MOP-79533), the Heart and Stroke Foundation of Ontario (PRG-5967, NA-6059 and T-6018), the Ontario Research Fund and by Genome Canada through the Ontario Genomics Institute.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hegele, R.A., Pollex, R.L. Hypertriglyceridemia: phenomics and genomics. Mol Cell Biochem 326, 35–43 (2009). https://doi.org/10.1007/s11010-008-0005-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11010-008-0005-1