Skip to main content
Log in

Alteration of mitochondrial oxidative capacity during porcine preadipocyte differentiation and in response to leptin

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mitochondrial apparatus is a fundamental aspect in cell, serving for amino acid biosynthesis, fatty acid oxidation (FAO), and ATP production. In this article, we investigated the change of mitochondrial oxidative capacity during porcine adipocyte differentiation and in response to leptin. Rhodamine 123 staining analysis showed about 2-fold increase of mitochondrial membrane electric potential in differentiated adipocyte in comparison with preadipocyte. The mRNA expression of Cytochromes c (Cyt c), carnitine palmitoyltransferase 1 (CPT1), and malate dehydrogenases (MDH) increased markedly (P < 0.05), but that of UCP2 decreased (P < 0.05). Moreover PGC-1α and UCP3 was very low and showed no changes during the adipocyte differentiation. The protein expression of Cyt c and the enzyme activity of Cytochrome c oxidase (COX) increased with preadipocyte differentiation, but cellular ATP level decreased. Furthermore, at the level of 10 and 100 ng/ml leptin not only selectively increased the gene expression of PGC-1α, CPT1, Cyt c, UCP2, and UCP3 (P < 0.05), but also enhanced COX enzyme activity which related to mitochondrial FAO. There is no change of Mitochondrial membrane electric potential and ATP level in cell treated by leptin. These results suggested Mitochondrial is not only critical in FAO, but also play an important role in adipogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Cyt c :

Cytochromes c

CEBP/α:

CAAT/enhancer binding protein α

PPAR:

Peroxisome proliferator activated receptor

PGC-1:

Peroxisome proliferator-activated receptor γ coactivator

COX:

Cytochrome c oxidase

CPT1:

Carnitine palmitoyltransferase 1

MDH:

Malate dehydrogenases

UCP:

Uncoupling protein

MRC:

Mitochondrial respiratory chain

NRF:

Nuclear respiratory factors

mtTFA:

Mitochondrial transcriptional factor A

References

  1. Sanigorski A, Cameron-Smith D, Lewandowski P et al (2000) Impact of obesity and leptin treatment on adipocyte gene expression in Psammomys obesus. J Endocrinol 164:45–50

    Article  PubMed  CAS  Google Scholar 

  2. Paul T, Chen B, Stuart W (2006) Adipose tissue and adipokines energy regulation from the human perspective. J Nutr 136:1935S–1939S

    Google Scholar 

  3. Audrey C, Maria-Carmen C, Yvette F et al (2004) Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation. J Biol Chem 279:40462–40469

    Article  Google Scholar 

  4. Mercy L, Pauw A de, Payen L et al (2005) Mitochondrial biogenesis in mtDNA-depleted cells involves a Ca2+-dependent pathway and a reduced mitochondrial protein import. FEBS J 272:5031–5055

    Article  PubMed  CAS  Google Scholar 

  5. Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78:783–809

    PubMed  CAS  Google Scholar 

  6. Kudo M, Sugawara A, Uruno A et al (2004) Transcription suppression of peroxisome proliferator-activated receptor 2 gene expression by tumor necrosis factor via an inhibition of CCAAT/enhancer-binding protein during the early stage of adipocyte differentiation. Endocrinology 145:4948–4956

    Article  PubMed  CAS  Google Scholar 

  7. Malaga M, Bautista AJ, Salazar JA et al (2000) Lipomatosis, proximal myopathy, and the mitochondrial 8344 mutation. A lipid storage myopathy? Muscle Nerve 23:538–542

    Article  Google Scholar 

  8. Kakuda TN (2000) Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin Ther 22:685–708

    Article  PubMed  CAS  Google Scholar 

  9. Vankoningsloo S, Piens M, Lecocq C et al (2005) Mitochondrial dysfunction induces triglyceride accumulation in 3T3-L1 cells: role of fatty acid-oxidation and glucose. J Lipid Res 46:1133–1149

    Article  PubMed  CAS  Google Scholar 

  10. McKay RM, McKay JP, Avery L et al (2003) C. elegans: a model for exploring the genetics of fat storage. Develop Cell 4:131–142

    Article  CAS  Google Scholar 

  11. Rodgers JT, Lerin C, Haas W et al (2005) Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434:113–118

    Article  PubMed  CAS  Google Scholar 

  12. Lin JD, Wu H, Tarr PT (2002) Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibers. Nature 418:797–801

    Article  PubMed  CAS  Google Scholar 

  13. St-Pierre J, Lin J, Krauss S et al (2003) Bioenergetic analysis of peroxisome proliferator-activated receptor coactivators1a and 1b (PGC-1a and PGC-1b) in muscle cells. J Biol Chem 278:26597–26603

    Article  PubMed  CAS  Google Scholar 

  14. Fruhbeck G, Gomez-Ambrosi J, Salvador J (2001) Leptin-induced lipolysis opposes the tonic inhibition of endogenous adenosine in white adipocytes. FASEB J 15:333–340

    Article  PubMed  CAS  Google Scholar 

  15. Tajima D, Masaki T, Hidaka S et al (2005) Affecting lipolysis and mRNA expression for uncoupling proteins. Exp Biol Med 230:200–206

    CAS  Google Scholar 

  16. Gondret F (2001) ADD-1/SREBP-1 is a major determinant of tissue differential lipogenic capacity in mammalian and avian species. J Lipid Res 42:106–113

    PubMed  CAS  Google Scholar 

  17. Li Y, Lu RH, Luo GF et al (2006) Effects of different cryoprotectants on the viability and biological characteristics of porcine preadipocyte. Cryobiology 53:240–247

    Article  PubMed  CAS  Google Scholar 

  18. Stocchi V, Cucchiarini L, Magnani M et al (1985) Simultaneous extraction and reverse-phase high performance liquid chromatographic determination of adenine and pyridine nucleotides in human red blood cells. Anal Biochem 146:118–124

    Article  PubMed  CAS  Google Scholar 

  19. Wilson-Fritch L, Burkart A, Bell G et al (2003) Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol Cell Biol 23:1085–1094

    Article  PubMed  CAS  Google Scholar 

  20. Prunet-Marcassusa B, Moulina K, Carmonab MC et al (1999) Inverse distribution of uncoupling proteins expression and oxidative capacity in mature adipocytes and stromal-vascular fractions of rat white and brown adipose tissues. FEBS Lett 464:184–188

    Article  Google Scholar 

  21. Omatsu-Kanbe M, Inoue K, Yamamoto T et al (2006) Effect of ATP on preadipocyte migration and adipocyte differentiation by activating P2Y receptors in 3T3-L1 cells. Biochem J 393:171–180

    Article  PubMed  CAS  Google Scholar 

  22. Owen OE, Kalhan SC, Hanson RW (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 277:30409–30412

    Article  PubMed  CAS  Google Scholar 

  23. Savagner F, Mirebeau D, Jacques C et al (2003) PGC-1-related coactivator and targets are upregulated in thyroid oncocytoma. Biochem Biophys Res Commun 310:779–784

    Article  PubMed  CAS  Google Scholar 

  24. Vianna CR, Huntgeburth M, Coppari R et al (2006) Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance. Cell Metabol 4:453–464

    Article  CAS  Google Scholar 

  25. Kamei Y, Ohizumi H, Fujitani Y et al (2003) PPAR γ coactivator 1β/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. PNAS 100:12378–12383

    Article  PubMed  CAS  Google Scholar 

  26. Wagoner B, Hausman DB, Harris RB (2006) Direct and indirect effects of leptin on preadipocyte proliferation and differentiation. Am J Physiol Regul Integr Comp Physiol 290:1557–1564

    Google Scholar 

  27. Park BH, Wang MY, Lee Y et al (2006) Combined leptin actions on adipose tissue and hypothalamus are required to deplete adipocyte fat in lean rats. J Biol Chem 281:40283–40291

    Article  PubMed  CAS  Google Scholar 

  28. Kakuma T, Wang ZW, Pan WT et al (2000) Role of leptin in peroxisome proliferator-activated receptor gamma coactivator-1 expression. Endocrinology 141:4576–4582

    Article  PubMed  CAS  Google Scholar 

  29. Angel A, Desat KS, Halperin ML (1971) Reduction in adipocyte ATP by lipolytic agents: relation to intracellular free fatty acid accumulation. J Lipid Res 12:203–244

    PubMed  CAS  Google Scholar 

  30. Susanne K, Anita S, Stephane B (2001) A effect of the β3-adrenergic agonist Cl316, 243 on functional differentiation of white and brown adipocytes in primary cell culture. Biochim Biophys Acta 1539:85–92

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China under Grant number 2004CB117506 and National Natural Science Foundation under Grant number 30471239.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong-She Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, GF., Yu, TY., Wen, XH. et al. Alteration of mitochondrial oxidative capacity during porcine preadipocyte differentiation and in response to leptin. Mol Cell Biochem 307, 83–91 (2008). https://doi.org/10.1007/s11010-007-9587-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9587-2

Keywords

Navigation