Skip to main content
Log in

The role of iNOS-derived NO in the antihypertrophic actions of B-type natriuretic peptide in neonatal rat cardiomyocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In the infarcted rat heart, the increase of NO occurs in the hypertrophied myocardium of non-infarcted areas and its antihypertrophic efficacy has been well established. As another endogenous regulator and the reliable index of heart pathology, B-type natriuretic peptide also exhibits the antihypertrophic properties in many tissues by elevating intracellular cGMP. Several studies indicate that natriuretic peptides family may exert some actions in part via a nitric oxide pathway following receptor-mediated stimulation of iNOS. Therefore, it raises our great interest to ask what role NO plays in the antihypertrophic actions of B-type natriuretic peptide in cardiomyocytes. Incubation of cardiomyocytes under mild hypoxia for 12 h caused a significant increase in cellular protein content, protein synthesis and cell surface sizes. This growth stimulation was suppressed by exogenous B-type natriuretic peptide in a concentration dependent manner. Furthermore, the generation of intracellular cGMP, the upregulation of iNOS mRNA expression, the increase of iNOS activity and subsequent nitrite generation in hypertrophic cardiomyocytes was also increased by B-type natriuretic peptide. AG, a selective iNOS inhibitor, inhibited the upregulation of iNOS expression and the increase of iNOS activity by the combination of B-type natriuretic peptide/mild hypoxia or by the combination of 8-bromo-cGMP/mild hypoxia. Rp-8-br-cGMP, cGMP dependent protein kinase inhibitor, attenuated the actions of B-type natriuretic peptide and 8-bromo-cGMP which increases intracellular cGMP independent of B-type natriuretic peptide. In conclusion, our present data suggest that B-type natriuretic peptide exerted the antihypertrophic effects in cardiomyocytes, which was partially attributed to induction of iNOS-derived NO by cGMP pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mann DL (1999) Mechanisms and models in heart failure: a combinatorial approach. Circulation 100:999–1008

    PubMed  CAS  Google Scholar 

  2. Li C, Gardner DG (1995) Natriuretic peptides inhibit DNA synthesis in cardiac fibroblasts. Hypertension 25:227–234

    Google Scholar 

  3. Ninikoski J, Heughan C, Hunt TK (1972) Oxygen tensions in human wounds. J Surg Res 12:77–82

    Article  PubMed  CAS  Google Scholar 

  4. Ito H, Adachi S, Tamamori M, Fujisaki H, Tanaka M, Lin M, Akimoto H, Marumo F, Hiroe M (1996) Mild hypoxia induces hypertrophy of cultured neonatal rat cardiomyocytes: a possible endogenous endothelin-1-mediated mechanism. J Mol Cell Cardiol 28:1271–1277

    Article  PubMed  CAS  Google Scholar 

  5. Webster KA, Discher DJ, Bishopric NH (1993) Induction and nuclear accumulation of Fos and Jun proto-oncogenes in hypoxic cardiac myocytes. J Biol Chem 268:16852–16858

    PubMed  CAS  Google Scholar 

  6. Vanderheyden M, Bartunek J, Goethals M (2004) Brain and other natriuretic peptides: molecular aspects. Eur J Heart Fail 6:261–268

    Article  PubMed  CAS  Google Scholar 

  7. Kitakaze M, Node K, Komamura K, Minamino T, Inoue M, Hori M, Kamada T (1995) Evidence for nitric oxide generation in the cardiomyocytes: its augmentation by hypoxia. J Mol Cell Cardiol 27:2149–2154

    Article  PubMed  CAS  Google Scholar 

  8. Jung F, Palmer LA, Zhou N, Johns RA (2000) Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes. Circ Res 86:319–325

    PubMed  CAS  Google Scholar 

  9. Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS (1998) Nitric oxide, atrial natriuretic peptide and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts activity. J Clin Invest 101:812–818

    PubMed  CAS  Google Scholar 

  10. Wollert KC, Fiedler B, Gambaryan S, Smolenski A, Heineke J, Butt E, Trautwein C, Lohmann SM, Drexler H (2002) Gene transfer of cGMP-dependent protein kinase I enhances the antihypertrophic effects of nitric oxide in cardiomyocytes. Hypertension 39:87–92

    Article  PubMed  CAS  Google Scholar 

  11. Marumo T, Nakaki T, Hishikawa K, Hirahashi J, Suzuki H, Kato R, Saruta T (1995) Natriuretic peptide-augmented induction of nitric oxide synthase through cyclic guanosine 3′,5′-monophosphate elevation in vascular smooth muscle cells. Endocrinology 136:2135–2142

    Article  PubMed  CAS  Google Scholar 

  12. Vollmar AM, Schulz R (1995) Atrial natriuretic peptide inhibits nitric oxide synthesis in mouse macrophages. Life Sci 56:149–155

    Article  Google Scholar 

  13. Wang HX, Tao L, Rao MR (1995) Inhibitory effects of captopril on protein synthesis of cultured neonatal rat heart cells. Chin J Pharmacol Toxicol 9:8–11

    CAS  Google Scholar 

  14. Berk BC, Vekshtein V, Gordon HM, Tsuda T (1989) Angiotensin II stimulated protein synthesis in cultured vascular smooth muscle cells, Hypertension 13:305–314

    PubMed  CAS  Google Scholar 

  15. Li HT, Long CS, Rokosh G, Honbo NY, Karliner JS (1995) Chronic hypoxia differentially regulates α1-adrenergic receptor subtype mRNAs and inhibits α 1-adrenergic receptor-stimulated cardiac hypertrophy and signaling. Circulation 92:918–925

    PubMed  CAS  Google Scholar 

  16. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  17. Luo JD, Xie F, Zhang WW, Ma XD, Guan JX, Chen X (2001) Simvastatin inhibits noradrenaline-induced hypertrophy of cultured neonatal rat cardiomyocytes. Br J Pharmacol 132:159–164

    Article  PubMed  CAS  Google Scholar 

  18. Ding AH, Nathan CF, Stuehr DJ (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages: comparison of activating cytokines and evidence for independent production. J Immunol 14:2407–2412

    Google Scholar 

  19. Fadi S, Chang Y, Lei X, Rakesh CK (2003) Sildenafil induces delayed preconditioning through inducible nitric oxide synthase-dependent pathway in mouse heart. Circ Res 92:595–597

    Article  CAS  Google Scholar 

  20. Kuhn M (2004) Molecular physiology of natriuretic peptide signaling. Basic Res Cardiol 99:76–82

    Article  PubMed  CAS  Google Scholar 

  21. Rosencrantz AC, Woods RL, Dusting GJ, Ritchie RH (2003) Antihypertrophic actions of the natriuretic peptides in adult rat cardiomyocytes: importance of cyclic GMP. Cardiovasc Res 57:515–522

    Article  Google Scholar 

  22. Ito H, Pratt RE, Ohno M, Dzau VJ (1992) Atrial natriuretic polypeptide as a novel antigrowth factor of endothelial cells. Hypertension 19:758–761

    Google Scholar 

  23. Holtwick R, Van Eickels M, Skryabin BV, Baba HA, Bubikat A, Begrow F, Schneider MD, Garbers DL, Kuhn M (2003) Pressure independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A. J Clin Invest 111:1399–1407

    Article  PubMed  CAS  Google Scholar 

  24. Kishimoto I, Rossi K, Garbers DL (2001) A genetic model provides evidence that the receptor for atrial natriuretic peptide (guanylyl cyclase-A) inhibits cardiac ventricular myocyte hypertrophy. Proc Natl Acad Sci 98:2703–2706

    Article  PubMed  CAS  Google Scholar 

  25. Inoue T, Fukuo K, Nakahashi T, Hata S, Morimoto S, Ogihara T (1995) cGMP upregulates nitric oxide synthase expression in vascular smooth muscle cells. Hypertension 25:711–714

    PubMed  CAS  Google Scholar 

  26. Taylor BS, de Vera ME, Ganster RW, Wang Q, Shapiro RA, Morris Jr SM , Billiar TR, Geller DA (1998) NF-κB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene. J Biol Chem 273:15148–15156

    Article  PubMed  CAS  Google Scholar 

  27. Marks-Konczalik J, Chu SC, Moss J (1998) Cytokine-mediated transcriptional induction of the human inducible nitric oxide synthase gene requires both activator protein 1 and nuclear factor κB-binding sites. J Biol Chem 273:22201–22208

    Article  PubMed  CAS  Google Scholar 

  28. Balligand JL, Cannon PJ (1997) Nitric oxide synthases and cardiac muscle: autocrine and paracrine influences. Arterioscler Thromb Vasc Biol 17:1846–1858

    PubMed  CAS  Google Scholar 

  29. Ungureanu-Longrois D, Balligand JL, Kelly RA, Smith TW (1995) Myocardial contractile dysfunction in the systemic inflammatory response syndrome: role of a cytokine-inducible nitric oxide synthase in cardiomyocytes. J Mol Cell Cardiol 27:155–167

    PubMed  CAS  Google Scholar 

  30. Wildhirt SM, Suzuki H, Horstman D, Weismuller S, Dudek RR, Akiyama K, Reichart B (1997) Selective modulation of inducible nitric oxide synthase isozyme in myocardial infarction. Circulation 96:1616–1623

    PubMed  CAS  Google Scholar 

  31. Haywood GA, Tsao PS, vonderLeyen HE, Mann MJ, Keeling PJ, Trindade PT, Lewis NP, Byrne CD, Rickenbacher PR (1996) Expression of inducible nitric oxide synthase in human heart failure. Circulation 93:1087–1094

    PubMed  CAS  Google Scholar 

  32. Kiemer AK, Vollmar AM (1997) Effects of different natriuretic peptides on nitric oxide synthesis in macrophages. Endocrinology 138:4282–4290

    Article  PubMed  CAS  Google Scholar 

  33. Yamamoto K, Ikeda U, Shimada K (1997) Natriuretic peptides modulate nitric oxide synthesis in cytokine-stimulated cardiac myocytes. J Mol Cell Cardiol 99:2375–2382

    Article  Google Scholar 

  34. Ritchie RH, Schiebinger RJ, LaPointe MC, Marsh JD (1998) Angiotensin II-induced hypertrophy of adult rat cardiomyocytes is blocked by nitric oxide. Am J Physiol 275:1370–1374

    Google Scholar 

  35. Berman JS, Crow JP (1993) Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem Soc Trans 21:330–334

    Google Scholar 

  36. Lefer DJ, Scalia R, Campbell B, Nossuli T, Hayward R, Salamon M, Grayson J, Lefer MA (1997) Peroxynitrite inhibits leukocyte-endothelial cell interactions and protects against ischemia-reperfusion injury in rats. J Clin Invest 99:684–691

    Article  PubMed  CAS  Google Scholar 

  37. Nossuli TO, Hayward R, Jensen D, Scalia R, Lefer AM (1998) Mechanism of cardioprotection by peroxynitrite in myocardial ischemia and reperfusion injury. Am J Physiol Heart Circ Physiol 275:509–519

    Google Scholar 

  38. Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L (1995) A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med 182:1683–1693

    Article  PubMed  CAS  Google Scholar 

  39. Goetze JP, Gore A, Moller CH, Steinbruchel DA, Rehfeld JF, Nielsen LB (2004) Acute myocardial hypoxia increases BNP gene expression. FASEB J 18:1928–1930

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Research Grant was from the Indonesian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxiang Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Yan, M., Li, J. et al. The role of iNOS-derived NO in the antihypertrophic actions of B-type natriuretic peptide in neonatal rat cardiomyocytes. Mol Cell Biochem 302, 169–177 (2007). https://doi.org/10.1007/s11010-007-9438-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9438-1

Keywords

Navigation