Skip to main content
Log in

Antimicrobial Actions of Human and Macaque Sperm Associated Antigen (SPAG) 11 Isoforms: influence of the N-terminal peptide

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In addition to their role in sperm maturation, recent evidence has indicated that epididymal proteins have a role in male reproductive tract innate immunity. Herein we demonstrate that human and macaque epididymal protein isoforms in the SPAG (sperm associated antigen) 11 family, full length SPAG11C, K and L exhibit potent antibacterial activity against E. coli. Analysis of activities of the N- and C-terminal domains revealed that the human N-terminal peptide is bactericidal, while the C-terminal domains that contain the defensin-like 6 cysteine array in SPAG11C and partial arrays in SPAG11K and SPAG11L, lack antibacterial activity. The N-terminal peptide does not appear to contain all the determinants of activity since full-length human SPAG11C is more active than the isolated N-terminal peptide and since sulfhydryl reduction and alkylation, which would affect primarily the C-terminal peptides, completely abolished activities of the whole proteins. These results suggest that the structure conferred by the disulfide bonds in human SPAG11C contributes to the antibacterial activity of the whole molecule. The activities of the N-terminal peptide and of full length human SPAG11C were somewhat reduced in increasing NaCl concentrations. In contrast, the antibacterial activities of full length macaque SPAG11C, K and L were unaffected by the presence of NaCl suggesting a mechanism in the macaque that is less dependent upon electrostatic interactions. SPAG11C, K and L disrupted E. coli membranes but had no effect on erythrocyte membranes. Inhibition of E. coli RNA, DNA and protein synthesis by nonlethal concentrations of SPAG11 isoforms indicated an additional mechanism of bacterial killing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jantos C, Baumgartner W, Durchfeld B, Schiefer HG: Experimental epididymitis due to Chlamydia trachomatis in rats. Infect Immun 60: 2324–2328, 1992

    PubMed  CAS  Google Scholar 

  2. Blanchard TJ, Mabey DC: Chlamydial infections. Br J Clin Pract 48: 201–205, 1994

    PubMed  CAS  Google Scholar 

  3. Ganz T: Antimicrobial polypeptides. J Leukoc Biol 75: 34–38, 2004

    Article  PubMed  CAS  Google Scholar 

  4. Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM: Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88: 553–560, 1997

    Article  PubMed  CAS  Google Scholar 

  5. Yenugu S, Hamil KG, Radhakrishnan Y, French FS, Hall SH: The androgen-regulated epididymal sperm-binding protein, human beta-defensin 118 (DEFB118) (formerly ESC42), is an antimicrobial beta-defensin. Endocrinology 145: 3165–3173, 2004

    Article  PubMed  CAS  Google Scholar 

  6. Hoover DM, Rajashankar KR, Blumenthal R, Puri A, Oppenheim JJ, Chertov O, Lubkowski J: The structure of human beta-defensin-2 shows evidence of higher order oligomerization. J Biol Chem 275: 32911–32918, 2000

    Article  PubMed  CAS  Google Scholar 

  7. Lehrer RI, Barton A, Daher KA, Harwig SS, Ganz T, Selsted ME: Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest 84: 553–561, 1989

    CAS  Google Scholar 

  8. Friedrich CL, Moyles D, Beveridge TJ, Hancock RE: Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob Agents Chemother 44: 2086–2092, 2000

    Article  PubMed  CAS  Google Scholar 

  9. Otvos L, Jr., O I, Rogers ME, Consolvo PJ, Condie BA, Lovas S, Bulet P, Blaszczyk-Thurin M: Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 39: 14150–14159, 2000

    Article  PubMed  CAS  Google Scholar 

  10. Hall SH, Hamil KG, French FS: Host defense proteins of the male reproductive tract. J Androl 23: 585–597, 2002

    PubMed  CAS  Google Scholar 

  11. Com E, Bourgeon F, Evrard B, Ganz T, Colleu D, Jegou B, Pineau C: Expression of antimicrobial defensins in the male reproductive tract of rats, mice, and humans. Biol Reprod 68: 95–104, 2003

    Article  PubMed  CAS  Google Scholar 

  12. Garcia JR, Krause A, Schulz S, Rodriguez-Jimenez FJ, Kluver E, Adermann} K, Forssmann U, Frimpong-Boateng A, Bals R, Forssmann WG: Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. Faseb J 15: 1819–1821, 2001

    PubMed  CAS  Google Scholar 

  13. Palladino MA, Mallonga TA, Mishra MS: Messenger RNA (mRNA) expression for the antimicrobial peptides beta-defensin-1 and beta-defensin-2 in the male rat reproductive tract: beta-defensin-1 mRNA in initial segment and caput epididymidis is regulated by androgens and not bacterial lipopolysaccharides. Biol Reprod 68: 509–515, 2003

    Article  PubMed  CAS  Google Scholar 

  14. Zhao C, Wang I, Lehrer RI: Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett 396: 319–322, 1996

    Article  PubMed  CAS  Google Scholar 

  15. Travis SM, Anderson NN, Forsyth WR, Espiritu C, Conway BD, Greenberg} EP, McCray PB, Jr., Lehrer RI, Welsh MJ, Tack BF: Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun 68: 2748–2755, 2000

    Article  PubMed  CAS  Google Scholar 

  16. Jin YZ, Bannai S, Dacheux F, Dacheux JL, Okamura N: Direct evidence for the secretion of lactoferrin and its binding to sperm in the porcine epididymis. Mol Reprod Dev 47: 490–496, 1997

    Article  Google Scholar 

  17. Tsuruta JK, O'Brien DA, Griswold MD: Sertoli cell and germ cell cystatin C: stage-dependent expression of two distinct messenger ribonucleic acid transcripts in rat testes. Biol Reprod 49: 1045–1054, 1993

    Article  PubMed  CAS  Google Scholar 

  18. Ohlsson K, Bjartell A, Lilja H: Secretory leucocyte protease inhibitor in the male genital tract: PSA-induced proteolytic processing in human semen and tissue localization. J Androl 16: 64–74, 1995

    PubMed  CAS  Google Scholar 

  19. Yenugu S, Richardson RT, Sivashanmugam P, Wang Z, O'Rand MG, French FS, Hall SH: Antimicrobial activity of human EPPIN, an androgen-regulated, sperm-bound protein with a whey acidic protein motif. Biol Reprod 71: 1484–1490, 2004

    Article  PubMed  CAS  Google Scholar 

  20. Hamil KG, Liu Q, Sivashanmugam P, Yenugu S, Soundararajan R, Grossman G, Richardson RT, Zhang YL, O'Rand MG, Petrusz P, French FS, Hall SH: Cystatin 11: a new member of the cystatin type 2 family. Endocrinology 143: 2787–2796, 2002

    Article  PubMed  CAS  Google Scholar 

  21. Yenugu S, Hamil KG, Birse CE, Ruben SM, French FS, Hall SH: Antibacterial properties of the sperm-binding proteins and peptides of human epididymis 2 (HE2) family; salt sensitivity, structural dependence and their interaction with outer and cytoplasmic membranes of Escherichia coli. Biochem J 372: 473–483, 2003

    Article  PubMed  CAS  Google Scholar 

  22. Ibrahim NM, Young LG, Frohlich O: Epididymal specificity and androgen regulation of rat EP2. Biol Reprod 65: 575–580, 2001

    Article  PubMed  CAS  Google Scholar 

  23. Hamil KG, Sivashanmugam P, Richardson RT, Grossman G, Ruben SM, Mohler JL, Petrusz P, O'Rand MG, French FS, Hall SH: HE2beta and HE2gamma, new members of an epididymis-specific family of androgen-regulated proteins in the human. Endocrinology 141: 1245–1253, 2000

    Article  PubMed  CAS  Google Scholar 

  24. Frohlich O, Ibrahim NM, Young LG: EP2 splicing variants in rhesus monkey (Macaca mulatta) epididymis. Biol Reprod 69: 294–300, 2003

    Article  PubMed  CAS  Google Scholar 

  25. Frohlich O, Po C, Murphy T, Young LG: Multiple promoter and splicing mRNA variants of the epididymis-specific gene EP2. J Androl 21: 421–430, 2000

    PubMed  CAS  Google Scholar 

  26. Avellar MC, Honda L, Hamil KG, Yenugu S, Grossman G, Petrusz P, French FS, Hall SH: Differential expression and antibacterial activity of epididymis protein 2 isoforms in the male reproductive tract of human and rhesus monkey (Macaca mulatta). Biol Reprod 71: 1453–1460, 2004

    Article  PubMed  CAS  Google Scholar 

  27. Kirchhoff C, Osterhoff C, Habben I, Ivell R, Kirchloff C: Cloning and analysis of mRNAs expressed specifically in the human epididymis. Int J Androl 13: 155–167, 1990

    Article  PubMed  CAS  Google Scholar 

  28. von Horsten HH, Derr P, Kirchhoff C: Novel antimicrobial peptide of human epididymal duct origin. Biol Reprod 67: 804–813, 2002

    Article  PubMed  CAS  Google Scholar 

  29. Liao M, Ruddock PS, Rizvi AS, Hall SH, French FS, Dillon JR: Cationic peptide of the male reproductive tract, HE2alpha, displays antimicrobial activity against Neisseria gonorrhoeae, Staphylococcus aureus and Enterococcus faecalis. J Antimicrob Chemother 2005 in press

  30. Loh B, Grant C, Hancock RE: Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother 26: 546–551, 1984

    PubMed  CAS  Google Scholar 

  31. Wu M, Maier E, Benz R, Hancock RE: Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38: 7235–7242, 1999

    Article  PubMed  CAS  Google Scholar 

  32. Bals R, Goldman MJ, Wilson JM: Mouse beta-defensin 1 is a salt-sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract. Infect Immun 66: 1225–1232, 1998

    PubMed  CAS  Google Scholar 

  33. Fernandez-Lopez S, Kim HS, Choi EC, Delgado M, Granja JR, Khasanov A, Kraehenbuehl K, Long G, Weinberger DA, Wilcoxen KM, Ghadiri MR: Antibacterial agents based on the cyclic D,L-alpha-peptide architecture. Nature 412: 452–455, 2001

    Article  PubMed  CAS  Google Scholar 

  34. von Horsten HH, Schafer B, Kirchhoff C: SPAG11/isoform HE2C, an atypical anionic beta-defensin-like peptide. Peptides 25: 1223–1233, 2004

    Article  PubMed  CAS  Google Scholar 

  35. Zasloff M: Antimicrobial peptides of multicellular organisms. Nature 415: 389–395, 2002

    Article  PubMed  CAS  Google Scholar 

  36. Nag A, Chaudhuri N: Electrolyte content of human seminal fluid at different states of fertility. Indian J Exp Biol 16: 954–956, 1978

    PubMed  CAS  Google Scholar 

  37. Kavanagh JP: Sodium, potassium, calcium, magnesium, zinc, citrate and chloride content of human prostatic and seminal fluid. J Reprod Fertil 75: 35–41, 1985

    Article  PubMed  CAS  Google Scholar 

  38. Friedrich C, Scott MG, Karunaratne N, Yan H, Hancock RE: Salt-resistant alpha-helical cationic antimicrobial peptides. Antimicrob Agents Chemother 43: 1542–1548, 1999

    PubMed  CAS  Google Scholar 

  39. Lauth X, Shike H, Burns JC, Westerman ME, Ostland VE, Carlberg JM, Van Olst JC, Nizet V, Taylor SW, Shimizu C, Bulet P: Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass. J Biol Chem 277: 5030–5039, 2002

    Article  PubMed  CAS  Google Scholar 

  40. Shin SY, Yang ST, Park EJ, Eom SH, Song WK, Kim Y, Hahm KS, Kim JI: Salt resistance and synergistic effect with vancomycin of alpha-helical antimicrobial peptide P18. Biochem Biophys Res Commun 290: 558–562, 2002

    Article  PubMed  CAS  Google Scholar 

  41. Matsuzaki K, Nakayama M, Fukui M, Otaka A, Funakoshi S, Fujii N, Bessho K, Miyajima K: Role of disulfide linkages in tachyplesin-lipid interactions. Biochemistry 32: 11704–11710, 1993

    Article  PubMed  CAS  Google Scholar 

  42. Kuzuhara T, Nakajima Y, Matsuyama K, Natori S: Determination of the disulfide array in sapecin, an antibacterial peptide of Sarcophaga peregrina (flesh fly). J Biochem (Tokyo) 107: 514–518, 1990

    CAS  Google Scholar 

  43. Mangoni ME, Aumelas A, Charnet P, Roumestand C, Chiche L, Despaux E, Grassy G, Calas B, Chavanieu A: Change in membrane permeability induced by protegrin 1: implication of disulphide bridges for pore formation. FEBS Lett 383: 93–98, 1996

    Article  PubMed  CAS  Google Scholar 

  44. Perez-Paya E, Houghten RA, Blondelle SE: The role of amphipathicity in the folding, self-association and biological activity of multiple subunit small proteins. J Biol Chem 270: 1048–1056, 1995

    Article  PubMed  CAS  Google Scholar 

  45. Yang L, Weiss TM, Lehrer RI, Huang HW: Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys J 79: 2002–2009, 2000

    Article  PubMed  CAS  Google Scholar 

  46. Westerhoff HV, Juretic D, Hendler RW, Zasloff M: Magainins and the disruption of membrane-linked free-energy transduction. Proc Natl Acad Sci USA 86: 6597–6601, 1989

    Article  PubMed  CAS  Google Scholar 

  47. Bierbaum G, Sahl HG: Induction of autolysis of staphylococci by the basic peptide antibiotics Pep 5 and nisin and their influence on the activity of autolytic enzymes. Arch Microbiol 141: 249–254, 1985

    Article  PubMed  CAS  Google Scholar 

  48. Matsuzaki K: Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1462: 1–10, 1999

    Article  PubMed  CAS  Google Scholar 

  49. Wu M, Hancock RE: Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and cytoplasmic membrane. J Biol Chem 274: 29–35, 1999

    Article  PubMed  CAS  Google Scholar 

  50. Falla TJ, Karunaratne DN, Hancock RE: Mode of action of the antimicrobial peptide indolicidin. J Biol Chem 271: 19298–19303, 1996

    Article  PubMed  CAS  Google Scholar 

  51. den Hertog AL vMJ, van Veen HA, van't Hof W, Bolscher JG, Veerman EC, Nieuw Amerongen AV: Candidacidal effects of two antimicrobial peptides: Histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. Biochem J in press, 2005

  52. Mangoni ML, Papo N, Barra D, Simmaco M, Bozzi A, Di Giulio A, Rinaldi AC: Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability, and viability of Escherichia coli. Biochem J 380: 859–865, 2004

    Article  PubMed  CAS  Google Scholar 

  53. Sitaram N, Sai KP, Singh S, Sankaran K, Nagaraj R: Structure-function relationship studies on the frog skin antimicrobial peptide tigerinin 1: design of analogs with improved activity and their action on clinical bacterial isolates. Antimicrob Agents Chemother 46: 2279–2283, 2002

    Article  PubMed  CAS  Google Scholar 

  54. Yenugu S, Hamil KG, French FS, Hall SH: Antimicrobial actions of the human epididymis 2 (HE2) protein isoforms, HE2alpha, HE2beta1 and HE2beta2. Reprod Biol Endocrinol 2: 61, 2004

    Article  PubMed  CAS  Google Scholar 

  55. Oren Z, Shai Y: Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 47: 451–463, 1998

    Article  PubMed  CAS  Google Scholar 

  56. Ilker MF, Nusslein K, Tew GN, Coughlin EB: Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J Am Chem Soc 126: 15870–15875, 2004

    Article  PubMed  CAS  Google Scholar 

  57. Park CB, Kim HS, Kim SC: Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244: 253–257, 1998

    Article  PubMed  CAS  Google Scholar 

  58. Ulvatne H, Samuelsen O, Haukland HH, Kramer M, Vorland LH: Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiol Lett 237: 377–384, 2004

    PubMed  CAS  Google Scholar 

  59. Skerlavaj B, Romeo D, Gennaro R: Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins. Infect Immun 58: 3724–3730, 1990

    PubMed  CAS  Google Scholar 

  60. Pellegrini A TU, Wild P, Schraner E, von Fellenberg R: Effect of lysozyme or modified lysozyme fragments on DNA and RNA synthesis and membrane permeability of Escherichia coli. Microbiol Res 155: 69–77, 2000

    PubMed  Google Scholar 

  61. Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock RE: Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 46: 605–614, 2002

    Article  PubMed  CAS  Google Scholar 

  62. Zhou CX, Zhang YL, Xiao L, Zheng M, Leung KM, Chan MY, Lo PS, Tsang LL, Wong HY, Ho LS, Chung YW, Chan HC: An epididymis-specific beta-defensin is important for the initiation of sperm maturation. Nat Cell Biol 6: 458–464, 2004

    Article  PubMed  CAS  Google Scholar 

  63. Yudin AI, Tollner TL, Li MW, Treece CA, Overstreet JW, Cherr GN: ESP13.2, a member of the beta-defensin family, is a macaque sperm surface-coating protein involved in the capacitation process. Biol Reprod 69: 1118–1128, 2003

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan H. Hall.

Additional information

Abbreviation: SPAG11, sperm associated antigen 11; CFUs, colony forming units; NPN, N-phenyl-1-napthylamine; diSC3-5, 3,5-dipropylthiadicarbocyanine iodide; IAA, iodoacetamide; BME, β-mercaptoethanol

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yenugu, S., Hamil, K.G., French, F.S. et al. Antimicrobial Actions of Human and Macaque Sperm Associated Antigen (SPAG) 11 Isoforms: influence of the N-terminal peptide. Mol Cell Biochem 284, 25–37 (2006). https://doi.org/10.1007/s11010-005-9009-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-9009-2

Keywords

Navigation