Skip to main content
Log in

Riesz rising sun lemma for several variables and the John-Nirenberg inequality

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We obtain a multidimensional analog of the well-known Riesz rising sun lemma. We prove a more precise version of this lemma for space dimension d = 2 . We use these lemmas to establish an anisotropic analog of the John-Nirenberg inequality for functions of bounded mean oscillation with an exact constant in the exponent. Earlier, this exact constant was only known in the one-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. P. Calderón and A. Zygmund, “On the existence of certain singular integrals,” Acta Math., 88 (1952), 85–139.

    Google Scholar 

  2. J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.

    Google Scholar 

  3. F. Riesz, “Sur un theoreme de maximum de MM. Hardy et Littlewood,” J. London Math. Soc., 7 (1932), 10–13.

    Google Scholar 

  4. G. Hardy, D. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1952.

    Google Scholar 

  5. I. Klemes, “A mean oscillation inequality,” Proc. Amer. Math. Soc., 93 (1985), no. 3, 497–500.

    Google Scholar 

  6. B. Jessen, J. Marcinkiewicz, and A. Zygmund, “Note on the differentiability of multiple integrals,” Fund. Math., 25 (1935), 217–234.

    Google Scholar 

  7. M. Gusman, Differentiation of Integrals inn, Springer-Verlag, Heidelberg, 1975.

    Google Scholar 

  8. E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton (USA), 1970.

    Google Scholar 

  9. F. John and L. Nirenberg, “On functions of bounded mean oscillation,” Comm. Pure Appl. Math., 14 (1961), 415–426.

    Google Scholar 

  10. A. A. Korenovskii, “On the relationship between mean oscillations and exact exponents of summability of functions,” Mat. Sb. [Math. USSR-Sb.], 181 (1990), no. 12, 1721–1727.

    Google Scholar 

  11. A. M. Garsia and E. Rodemich, “Monotonicity of certain functionals under rearrangements,” Ann. Inst. Fourier, Grenoble, 24 (1974), no. 2, 67–116.

    Google Scholar 

  12. C. Bennett, R. A. De Vore, and R. Sharpley, “Weak-L and BMO,” Ann. Math., 113 (1981), no. 2, 601–611.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Matematicheskie Zametki, vol. 77, no. 1, 2005, pp. 53–66.

Original Russian Text Copyright © 2005 by A. A. Korenovskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korenovskii, A.A. Riesz rising sun lemma for several variables and the John-Nirenberg inequality. Math Notes 77, 48–60 (2005). https://doi.org/10.1007/s11006-005-0005-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11006-005-0005-3

Key words