Skip to main content
Log in

Homological Perturbation Theory for Nonperturbative Integrals

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We use the homological perturbation lemma to produce explicit formulas computing the class in the twisted de Rham complex represented by an arbitrary polynomial. This is a non-asymptotic version of the method of Feynman diagrams. In particular, we explain that phenomena usually thought of as particular to asymptotic integrals in fact also occur exactly: integrals of the type appearing in quantum field theory can be reduced in a totally algebraic fashion to integrals over an Euler–Lagrange locus, provided this locus is understood in the scheme-theoretic sense, so that imaginary critical points and multiplicities of degenerate critical points contribute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert, C., Bleile, B., Fröhlich, J.: Batalin-Vilkovisky integrals in finite dimensions. J. Math. Phys. 51(1), 015213, 31 (2010). doi:10.1063/1.3278524

  2. Alexandrov, M., Kontsevich, M., Schwarz, A., Zaboronsky, O.: The geometry of the master equation and topological quantum field theory. Intern. J. Mod. Phys. A. 12(7), 1405–1429 (1997). doi:10.1142/S0217751X97001031

  3. Costello, K., Gwilliam, O.: Factorization algebras in perturbative quantum field theory. (2011). http://math.northwestern.edu/~costello/factorization_public.html

  4. Costello, K.: Renormalization and effective field theory, vol. 170. Mathematical Surveys and MonographsAmerican Mathematical Society, Providence (2011)

  5. Crainic, M.: On the perturbation lemma, and deformations. (2004). arXiv:math/0403266

  6. Douai, A.: Construction de variétés de Frobenius via les polynômes de Laurent: une autre approche. In: Singularités, volume 18 of Inst., Élie Cartan, pp. 105–123. Univ. Nancy, Nancy (2005)

  7. Dimca A., Saito M.: On the cohomology of a general fiber of a polynomial map. Compos. Math. 85(3), 299–309 (1993)

    MATH  MathSciNet  Google Scholar 

  8. Fiorenza, D.: An introduction to the Batalin-Vilkovisky formalism. Lecture given at the “Rencontres Mathematiques de Glanon”. (2003). arXiv:math/0402057

  9. Gwilliam, O., Johnson-Freyd, T.: How to derive Feynman diagrams for finite-dimensional integrals directly from the BV formalism. (2012). arXiv:1202.1554

  10. Goodwillie, T.: Answer to “Is the pairing between contours and functions perfect (modulo the kernel given by Stokes’ theorem)?” MathOverflow. (2012). http://mathoverflow.net/a/90404/78

  11. Hien M., Roucairol C.: Integral representations for solutions of exponential Gauss-Manin systems. Bull. Soc. Math. France 136(4), 505–532 (2008)

    MATH  MathSciNet  Google Scholar 

  12. Huebschmann, J.: Origins and breadth of the theory of higher homotopies. In: Higher structures in geometry and physics, volume 287 of Progr. Math., pp. 25–38. Birkhäuser/Springer, New York (2011)

  13. Isserlis L.: On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika 12, 134–139 (1918)

    Article  Google Scholar 

  14. Kashaev, R.M.: The hyperbolic volume of knots from the quantum dilogarithm. Lett. Math. Phys. 39(3),269–275 (1997). doi:10.1023/A:1007364912784

  15. Kouchnirenko A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32(1), 1–31 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  16. Malgrange, B.: Méthode de la phase stationnaire et sommation de Borel. In: Complex analysis, microlocal calculus and relativistic quantum theory (Proc. Internat. Colloq., Centre Phys., Les Houches, 1979), volume 126 of Lecture Notes in Phys., pp. 170–177. Springer, Berlin (1980)

  17. Morozov, A., Shakirov, Sh.: Introduction to integral discriminants. J. High Energy Phys. (12), 002, 39, (2009). doi:10.1088/1126-6708/2009/12/002

  18. Pham, F.: Vanishing homologies and the n variable saddlepoint method. In: Singularities, Part 2 (Arcata, Calif., 1981), volume 40 of Proc. Sympos. Pure Math., pp. 319–333. Amer. Math. Soc., Providence, RI (1983)

  19. Pantev, T., Toën B., Vaquié, M., Vezzosi, G.: Shifted symplectic structures. Publ. Math. Inst. Hautes Études Sci. 117, 271–328 (2013). doi:10.1007/s10240-013-0054-1. arXiv:1111.3209

  20. Reshetikhin, N.: Topological quantum field theory: 20 years later. In: European Congress of Mathematics, pp. 333–377. Eur. Math. Soc., Zürich (2010)

  21. Reshetikhin, N.Yu., Turaev, V.G.: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys. 127(1), 1–26 (1990)

  22. Sabbah, C.: Hypergeometric periods for a tame polynomial. Port. Math. (N.S.) 63(2), 173–226 (2006)

  23. Schulze, M.: Good bases for tame polynomials. J. Symbolic Comput. 39(1), 103–126 (2005). doi:10.1016/j.jsc.2004.10.001

  24. Shakirov, Sh.R.: A nonperturbative approach to finite-dimensional non-Gaussian integrals. Teoret. Mat. Fiz. 163(3), 495–504 (2010). doi:10.1007/s11232-010-0064-9

  25. Schwarz, A., Shapiro, I.: Twisted de Rham cohomology, homological definition of the integral and “physics over a ring”. Nucl. Phys. B. 809(3), 547–560 (2010). doi:10.1016/j.nuclphysb.2008.10.005

  26. Stasheff, J.: The (secret?) homological algebra of the Batalin-Vilkovisky approach. Talk given at Conference on Secondary Calculus and Cohomological Physics, Moscow, Russia, pp. 24–31. (1997). arXiv:hep-th/9712157

  27. Weibel, C.A.: History of homological algebra. In: History of topology, pp. 797–836. North-Holland, Amsterdam (1999). doi:10.1016/B978-044482375-5/50029-8

  28. Witten E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121(3), 351–399 (1989)

    Article  MATH  ADS  Google Scholar 

  29. Witten E.: A note on the antibracket formalism. Mod. Phys. Lett. A 5(7), 487–494 (1990)

    Article  MATH  ADS  Google Scholar 

  30. Witten, E.: Analytic continuation of Chern-Simons theory. In: Chern-Simons gauge theory: 20 years after, volume 50 of AMS/IP Stud. Adv. Math., pp. 347–446. Amer. Math. Soc., Providence (2011)

  31. Zworski, M.: Semiclassical analysis, volume 138 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo Johnson-Freyd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson-Freyd, T. Homological Perturbation Theory for Nonperturbative Integrals. Lett Math Phys 105, 1605–1632 (2015). https://doi.org/10.1007/s11005-015-0791-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-015-0791-9

Mathematics Subject Classification

Keywords

Navigation