Skip to main content
Log in

Local Anyonic Quantum Fields on the Circle Leading to Cone-Local Anyons in Two Dimensions

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Using the method of implementable one-particle Bogoliubov transformations, it is possible to explicitly define a local covariant net of quantum fields on the (universal covering of the) circle S 1 with braid group statistics. These anyon fields transform under a representation of \({\widetilde{U(1)}}\) for arbitrary real-valued spin and their commutation relations depend on the relative winding number of localization regions. By taking the tensor product with a local covariant field theory on \({{{\rm{I\!R}}}^2}\), one can obtain a (non-boost covariant) cone-localized field net for anyons in two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler C.: Braid group statistics in two-dimensional quantum field theory. Rev. Math. Phys. 8, 907–924 (1996)

    Article  MathSciNet  Google Scholar 

  2. Baker G.A., Canright G.S., Mulay S.B., Sundberg C.: On the spectral problem for anyons. Commun. Math. Phys. 153, 277–295 (1193)

    Article  MathSciNet  Google Scholar 

  3. Bros J., Mund J.: Braid group statistics implies scattering in three-dimensional local quantum physics. Commun. Math. Phys. 315, 465–488 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Buchholz D., Fredenhagen K.: Locality and the structure of particle states. Commun. Math. Phys. 84, 1–54 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Buchholz D., Mack G., Todorov I.: The current algebra on the circle as a germ of local field theories. Nucl. Phys. B 5, 20–56 (1988)

    Article  MathSciNet  Google Scholar 

  6. Carey A.L., Hurst C.A.: A note on the boson–fermion correspondence and infinite dimensional groups. Commun. Math. Phys. 98, 435–448 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  7. Carey A.L., Langmann E.: Loop groups, anyons and the Calogero–Sutherland model. Commun. Math. Phys. 201, 1–34 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  8. Carey, A.L., Langmann, E.: Loop groups and quantum fields. In: Bouwknegt, P., Wu, S. (eds.) Geometric Analysis and Applications to Quantum Field Theory. Progress in Mathematics, vol. 205, pp. 45–94. Birkhauser, Boston (2002)

  9. Carey A.L., Ruijsenaars S.N.M.: On fermion gauge groups, current algebras and Kac–Moody algebras. Acta Appl. Math. 10, 1–86 (1987)

    Article  MathSciNet  Google Scholar 

  10. Dell’Antonio G., Figari R., Teta A.: Statistics in space dimension two. Lett. Math. Phys. 40, 235–256 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fredenhagen K., Gaberdiel M., Rüger S.: Scattering states of plektons (particles with braid group statistics) in 2 + 1 dimensional quantum field theory. Commun. Math. Phys. 175, 319–335 (1996)

    Article  ADS  MATH  Google Scholar 

  12. Fredenhagen, K., Rehren, K.-H., Schroer, B.: Superselection sectors with braid group statistics and exchange algebras II: geometric aspects and conformal covariance. Rev. Math. Phys. (special issue), 113–157 (1992)

  13. Fröhlich J., Marchetti P.A.: Quantum field theories of vortices and anyons. Commun. Math. Phys. 121, 177–223 (1989)

    Article  ADS  MATH  Google Scholar 

  14. Fröhlich J., Marchetti P.A.: Spin-statistics theorem and scattering in planar quantum field theories with braid statistics. Nucl. Phys. B 356, 533–573 (1991)

    Article  ADS  Google Scholar 

  15. Graziano E., Rothe K.D.: Anyons, spin and statistics in (2 + 1)-dimensional U(1)-scalar Chern–Simons gauge field theory. Phys. Rev. D 49, 5512–5525 (1994)

    Article  ADS  Google Scholar 

  16. Grosse H., Lechner G.: Noncommutative deformations of Wightman quantum field theories. JHEP 09, 131 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  17. Langmann E.: Cocycles for boson and fermion Bogoliubov transformations. J. Math. Phys. 35, 96–112 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Langmann E.: Fermion current algebras and Schwinger terms in 3 + 1 dimensions. Commun. Math. Phys. 162, 1–32 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Lechner G.: Deformations of quantum field theories and integrable models. Commun. Math. Phys. 212, 265–302 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  20. Liguori A., Mintchev M., Rossi M.: Anyon quantum fields without a Chern–Simons term. Phys. Lett. B 305, 52–58 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  21. Lundholm D., Solovej J.P.: Hardy and Lieb–Thirring inequalities for anyons. Commun. Math. Phys. 322, 883–908 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Lundholm D., Solovej J.P.: Local exclusion and Lieb–Thirring inequalities for intermediate and fractional statistics. Ann. Henri Poincaré 15, 1061–1107 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Marino EC: Duality, quantum vortices and anyons in the Maxwell–Chrn–Simons–Higgs theories. Ann. Phys. 224, 225–274 (1993)

    Article  ADS  MATH  Google Scholar 

  24. Mund J.: No-Go theorem for "free" relativistic anyons in d = 2 + 1. Lett. Math. Phys. 43, 319–328 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mund J.: Modular localization of massive particles with any spin in d = 2 + 1. J. Math. Phys. 44, 2037–2057 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Mund J.: The spin-statistics theorem for anyons and plektons in d =  2 + 1. Commun. Math. Phys. 286, 1159–1180 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Plaschke M.: Wedge local deformations of charged fields leading to anyonic commutation relations. Lett. Math. Phys. 103, 507–532 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Pressley. A., Segal, G.: Loop Groups. Oxford Mathematical Monographs, Oxford (1986)

  29. Ruijsenaars S.N.M.: On Bogoliubov transformations for systems of relativistic charged particles. J. Math. Phys. 18, 517 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  30. Ruijsenaars S.N.M.: On Bogoliubov transformations. II. The general case. Ann. Phys. 116, 105–134 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  31. Ruijsenaars S.N.M.: Integrable quantum field theories and Bogoliubov transformations. Ann. Phys. 132, 328–382 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  32. Salvitti D: Generalized particle statistics in two-dimensions: examples from the theory of free massive Dirac field. Commun. Math. Phys. 269, 473–492 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Segal G.: Unitary representations of some infinite dimensional groups. Commun. Math. Phys. 80, 301–342 (1981)

    Article  ADS  MATH  Google Scholar 

  34. Semenoff G.: Canonical quantum field theory with exotic statistics. Phys. Rev. Lett. 61, 517–520 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  35. Wilczek F.: Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957 (1982)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Plaschke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plaschke, M. Local Anyonic Quantum Fields on the Circle Leading to Cone-Local Anyons in Two Dimensions. Lett Math Phys 105, 1033–1055 (2015). https://doi.org/10.1007/s11005-015-0767-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-015-0767-9

Mathematics Subject Classification

Keywords

Navigation