Skip to main content
Log in

Realizations of Affine Weyl Group Symmetries on the Quantum Painlevé Equations by Fractional Calculus

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We realize affine Weyl group symmetries on the Schrödinger equations for the quantum Painlevé equations, by fractional calculus. This realization enables us to construct an infinite number of hypergeometric solutions to the Schrödinger equations for the quantum Painlevé equations. In other words, since the Schrödinger equations for the quantum Painlevé equations are equivalent to the Knizhnik–Zamolodchikov equations, we give one method of constructing hypergeometric solutions to the Knizhnik–Zamolodchikov equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nagoya H.: Hypergeometric solutions to Schrödinger equations for the quantum Painlevé equations. J. Math. Phys. 52(8), 083509 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  2. Nagoya, H.: A quantization of the sixth Painlevé equation, noncommutativity and singularities. In: Adv. Stud. Pure Math., vol. 55, pp. 291–298. Math. Soc. Japan, Tokyo (2009)

  3. Zamolodchikov A.B., Fateev V.A.: Operator algebra and correlation functions in the two-dimensional SU(2) × SU(2) chiral Wess–Zumino model. Sov. J. Nucl. Phys. 43(4), 1031–1044 (1986)

    Google Scholar 

  4. Teschner J.: Operator product expansion and factorization in the \({H_3^+}\) -WZNW model. Nucl. Phys. B 571(3), 555–582 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Giribet G.E.: Note on \({\mathbb{Z}_2}\) symmetries of the Knizhnik–Zamolodchikov equation. J. Math. Phys. 48(1), 012304 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  6. Awata, H., Fuji, H., Kanno, H., Manabe, M., Yamada, Y.: Localization with a surface operator, irregular conformal blocks and open topological string. arXiv:1008.0574

  7. Schechtman V.V., Varchenko A.N.: Arrangements of hyperplanes and Lie algebra homology. Invent. Math. 106, 139–194 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Nagoya H.: Quantum Painlevé systems of type \({A_l^{(1)}}\). Int. J. Math. 15, 1007–1031 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nagoya H., Grammaticos B., Ramani A.: Quantum Painlevé equations: from continuous to discrete and back. Regul. Chaotic Dyn. 13(5), 417–423 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Jimbo M., Nagoya H., Sun J.: Remarks on the confluent KZ equation for \({\mathfrak{sl}_2}\) and quantum Painlevé equations. J. Phys. A: Math. Theor. 41(17), 175205 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  11. Nagoya H.: Quantum Painlevé systems of type \({A_{n-1}^{(1)}}\) with higher degree Lax operators. Int. J. Math. 18(7), 839–868 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kuroki G.: Quantum groups and quantization of Weyl group symmetries of Painlevé systems. Adv. Stud. Pure Math. 61, 289–325 (2011)

    MathSciNet  Google Scholar 

  13. Miller K.S., Ross B.: An introduction to the fractional calculus and fractional differential equations. Wiley-Interscience, New York (1993)

    MATH  Google Scholar 

  14. Kohno M.: Global Analysis in Linear Differential Equations. Kluwer, Dordrecht (1999)

    Book  MATH  Google Scholar 

  15. Haraoka, Y., Hamaguchi, S.: Topological theory for Selberg type integral associated with rigid Fuchsian systems. Math. Ann. (2011). doi:10.1007/s00208-011-0717-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Nagoya.

Additional information

Research Fellow of the Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagoya, H. Realizations of Affine Weyl Group Symmetries on the Quantum Painlevé Equations by Fractional Calculus. Lett Math Phys 102, 297–321 (2012). https://doi.org/10.1007/s11005-012-0557-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-012-0557-6

Mathematics Subject Classification

Keywords

Navigation