Skip to main content
Log in

On the Uniqueness of Weak Weyl Representations of the Canonical Commutation Relation

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 19 May 2009

Abstract

Let (T, H) be a weak Weyl representation of the canonical commutation relation (CCR) with one degree of freedom. Namely T is a symmetric operator and H is a self-adjoint operator on a complex Hilbert space \({\mathcal{H}}\) satisfying the weak Weyl relation: for all \({t \in \mathbb{R}}\) (the set of real numbers), eitH D(T) ⊂ D(T) (i is the imaginary unit and D(T) denotes the domain of T) and \({T{\rm e}^{-itH}\psi = {\rm e}^{-itH}(T+t)\psi, \forall t \in \mathbb{R}, \forall\psi \in D(T)}\) . In the context of quantum theory where H is a Hamiltonian, T is called a strong time operator of H. In this paper we prove the following theorem on uniqueness of weak Weyl representations: Let \({\mathcal{H}}\) be separable. Assume that H is bounded below with \({\varepsilon_0 := \inf \sigma(H)}\) and \({\sigma(T)=\{z \in \mathbb{C}|{\rm Im} z \ge 0\}}\) , where \({\mathbb{C}}\) is the set of complex numbers and, for a linear operator A on a Hilbert space, σ(A) denotes the spectrum of A. Then \({(\overline{T}, H)}\) (\({\overline{T}}\) is the closure of T) is unitarily equivalent to a direct sum of the weak Weyl representation \({(-\overline{p}_{\varepsilon_0,+}, q_{\varepsilon_0,+})}\) on the Hilbert space \({L^2((\varepsilon_0,\infty))}\) , where \({q_{\varepsilon_0,+}}\) is the multiplication operator by the variable \({\lambda \in (\varepsilon_0,\infty)}\) and \({p_{\varepsilon_0,+} :=-i{\rm d}/{\rm d}\lambda}\) with \({D({\rm d}/{\rm d}\lambda)=C_0^{\infty}((\varepsilon_0,\infty))}\) . Using this theorem, we construct a Weyl representation of the CCR from the weak Weyl representation \({(\overline{T}, H)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aharonov Y., Bohm D.: Time in the quantum theory and the uncertainty relation for time and energy. Phys. Rev. 122, 1649–1658 (1961)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Arai A.: Generalized weak Weyl relation and decay of quantum dynamics. Rev. Math. Phys. 17, 1071–1109 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arai A.: Mathematical Principles of Quantum Phenomena (in Japanese). Asakura-Shoten, Tokyo (2006)

    Google Scholar 

  4. Arai A.: Spectrum of time operators. Lett. Math. Phys. 80, 211–221 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Arai A.: Some aspects of time operators. In: Accardi, L., Freudenberg, W., Ohya, M. (eds) Quantum Bio-Informatics, pp. 26–35. World Scientific, Singapore (2008)

    Chapter  Google Scholar 

  6. Arai A., Matsuzawa Y.: Construction of a Weyl representation from a weak Weyl representation of the canonical commutation relation. Lett. Math. Phys. 83, 201–211 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Bracci L., Picasso L.E.: On the Weyl algebras for systems with semibounded and bounded configuration space. J. Math. Phys. 47, 112102 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  8. Miyamoto M.: A generalized Weyl relation approach to the time operator and its connection to the survival probability. J. Math. Phys. 42, 1038–1052 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. von Neumann J.: Die Eindeutigkeit der Schrödingerschen Operatoren. Math. Ann. 104, 570–578 (1931)

    Article  MathSciNet  Google Scholar 

  10. Putnam C.P.: Commutation Properties of Hilbert Space Operators and Related Topics. Springer, Berlin (1967)

    Google Scholar 

  11. Reed M., Simon B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, New York (1972)

    MATH  Google Scholar 

  12. Reed M., Simon B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-adjointness. Academic Press, New York (1975)

    MATH  Google Scholar 

  13. Schmüdgen K.: On the Heisenberg commutation relation. I. J. Funct. Anal. 50, 8–49 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. Schmüdgen K.: On the Heisenberg commutation relation. II. Publ. RIMS Kyoto Univ. 19, 601–671 (1983)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asao Arai.

Additional information

This work is supported by the Grant-in-Aid No.17340032 for Scientific Research from Japan Society for the Promotion of Science (JSPS).

An erratum to this article can be found online at http://dx.doi.org/10.1007/s11005-009-0319-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arai, A. On the Uniqueness of Weak Weyl Representations of the Canonical Commutation Relation. Lett Math Phys 85, 15–25 (2008). https://doi.org/10.1007/s11005-008-0252-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-008-0252-9

Mathematics Subject Classification (2000)

Keywords

Navigation