Skip to main content
Log in

On Properties of Hamiltonian Structures for a Class of Evolutionary PDEs

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In a recent paper we proved that for certain class of perturbations of the hyperbolic equation u t  = f (u)u x , there exist changes of coordinate, called quasi-Miura transformations, that reduce the perturbed equations to the unperturbed one. We prove in the present paper that if in addition the perturbed equations possess Hamiltonian structures of certain type, the same quasi-Miura transformations also reduce the Hamiltonian structures to their leading terms. By applying this result, we obtain a criterion of the existence of Hamiltonian structures for a class of scalar evolutionary PDEs and an algorithm to find out the Hamiltonian structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Camassa R. and Holm D.D. (1993). An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71: 1661–1664

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Camassa R., Holm D.D. and Hyman J.M. (1994). A new integrable shallow water equation. Adv. Appl. Mech. 31: 1–33

    Article  Google Scholar 

  3. Degasperis, A., Procesi, M.: Asymptotic integrability. In: Symmetry and Perturbation Theory (Rome, 1998), pp. 23–37, World Scientific Publishing, River Edge (1999)

  4. Degasperis, A., Holm, D.D., Hone, A.N.I.: A new integrable equation with peakon solutions. Teoret. Mat. Fiz. 133, 170–183 (2002). Translation in Theoret. Math. Phys. 133, 1463–1474 (2002)

    Google Scholar 

  5. Degiovanni L., Magri F. and Sciacca V. (2005). On deformation of Poisson manifolds of hydrodynamic type. Commun. Math. Phys. 253: 1–24

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Drinfeld, V., Sokolov, V.: Lie algebras and equations of Korteweg-de Vries type, J. Math. Sci. 30, 1975–2036 (1985). Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki (Noveishie Dostizheniya) 24, 81–180 (1984)

    Google Scholar 

  7. Dubrovin B. (2006). On Hamiltonian perturbations of hyperbolic systems of conservation laws. II. Universality of critical behaviour. Commun. Math. Phys. 267: 117–139

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Dubrovin B., Liu S.-Q. and Zhang Y. (2006). On Hamiltonian perturbations of hyperbolic systems of conservation laws, I: Quasi-triviality of bi-Hamiltonian perturbations. Commun. Pure Appl. Math. 59: 559–615

    Article  MATH  MathSciNet  Google Scholar 

  9. Dubrovin, B., Zhang, Y.: Normal forms of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants. Preprint arXiv: math.DG/0108160 (2001)

  10. Flato M., Lichnerowicz A. and Sternheimer D. (1976). Deformations of Poisson brackets, Dirac brackets and applications. J. Math. Phys. 17: 1754–1762

    Article  ADS  MathSciNet  Google Scholar 

  11. Flato M., Pinczon G. and Simon J. (1977). Nonlinear representations of Lie groups. Ann. Sci. École Norm. Sup. (4) 10: 405–418

    MATH  MathSciNet  Google Scholar 

  12. Flato, M., Simon, J., Taflin, E.: Asymptotic completeness, global existence and the infrared problem for the Maxwell–Dirac equations. Mem. Am. Math. Soc. 127(606) (1997)

  13. Fuchssteiner B. and Fokas A.S. (1981). Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D 4: 47–66

    Article  ADS  MathSciNet  Google Scholar 

  14. Getzler E. (2002). A Darboux theorem for Hamiltonian operators in the formal calculus of variations. Duke Math. J. 111: 535–560

    Article  MATH  MathSciNet  Google Scholar 

  15. Hone A. and Wang J. (2003). Prolongation algebras and Hamiltonian operators for peakon equations. Inverse Probl 19: 129–145

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Kaup D. (1980). On the inverse scattering problem for cubic eigenvalue problems of the class \(\psi_{xxx}+6Q\psi_{x}+6R\psi=\lambda\psi\). Stud. Appl. Math. 62: 189–216

    MATH  MathSciNet  Google Scholar 

  17. Lichnerowicz A. (1977). Les varietes de Poisson et leurs algèbres de Lie associeés. J. Diff. Geom. 12: 253–300

    MATH  MathSciNet  Google Scholar 

  18. Liu S.-Q. and Zhang Y. (2005). Deformations of semisimple bihamiltonian structures of hydrodynamic type. J. Geom. Phys. 54: 427–453

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Liu S.-Q. and Zhang Y. (2006). On quasi-triviality and integrability of a class of scalar evolutionary PDEs. J. Geom. Phys. 57: 101–119

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Sawada K. and Kotera T. (1974). A method for finding N-soliton solutions of the KdV equation and KdV-like equation. Progr. Theor. Phys. 51: 1355–1367

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Taflin E. (1983). Analytic linearization of the Korteweg-de Vries equation. Pac. J. Math. 108: 203–220

    MATH  MathSciNet  Google Scholar 

  22. Taflin E. (1981). Analytic linearization, Hamiltonian formalism and infinite sequences of constants of motion for the Burgers equation. Phys. Rev. Lett. 47: 1425–1428

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youjin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, SQ., Wu, CZ. & Zhang, Y. On Properties of Hamiltonian Structures for a Class of Evolutionary PDEs. Lett Math Phys 84, 47–63 (2008). https://doi.org/10.1007/s11005-008-0234-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-008-0234-y

Mathematics Subject Classification (2000)

Keywords

Navigation