Skip to main content

Advertisement

Log in

Comparative Study of FDA and Time Series Approaches for Seabed Classification from Acoustic Curves

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

Seabed classification in coastal environments is usually accomplished using multivariate methods applied to acoustic features from corrected or uncorrected echoes. This paper presents a comparative study of alternative statistical tools based on time series clustering and non-hierarchical clustering methods for functional data. This allows us to consider the entire acoustic signal without information reduction and assess performance using data acquired in a controlled environment with three different seabed types. The methods considered are used to both analyse the classification power of the recorded echoes and identify the most significant portions of signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anderson JT, Van Holliday D, Kloser R, Reid DG, Simard Y (2008) Acoustic seabed classification: current practice and future directions. ICES J Mar Sci J Cons 65(6):1004–1011

    Article  Google Scholar 

  • Cardot H, Ferraty F, Sarda P (1999) Functional linear model. Stat Probab Lett 45:11–22

    Article  Google Scholar 

  • Chakraborty B, Haris K (2013) Remote acoustic seafloor characterization using numerical model and statistical based stochastic multifractals. In Papadakis JS, Bjørnø L (eds) Proceedings of the 1st international conference and exhibition on underwater acoustics. Institute of Applied & Computational Mathematics, pp 1013–1020

  • Cho W, Kim S, Park S (2016) Human action classification using multidimensional functional data analysis method. In: Park J, Chao HC, Arabnia H, Yen N (eds) Advanced multimedia and ubiquitous engineering, volume 354 of lecture notes in electric engineering. Springer, Berlin, pp 279–284

  • Clarke P, Hamilton L (1999) The ABCS program for the analysis of Echo sounder returns for acoustic bottom classification. Technical report, Maritime Operations Division Aeronautical and Maritime Research Laboratory, Australia

  • Cook RJ (2005) Kappa. In: Armitage P, Colton T (eds) Encyclopedia of biostatistics, vol 4. Wiley, London

    Google Scholar 

  • Cuesta-Albertos J, Febrero-Bande M (2010) A simple multiway ANOVA for functional data. TEST 19(3):537–557

    Article  Google Scholar 

  • Cuevas A, Febrero M, Fraiman R (2002) Linear functional regression: the case of fixed design and functional response. Canadian Journal of Statistics 30:285–300

    Article  Google Scholar 

  • Cuevas A, Febrero M, Fraiman R (2006) On the use of the bootstrap for estimating functions with functional data. Comput Stat Data Anal 51(2):1063–1074

    Article  Google Scholar 

  • Dommisse M, Urban D, Finney B, Hills S (2005) Potential depth biasing using the Biosonics VBT seabed classification software. Mar Technol Soc J 39(2):90–93

    Article  Google Scholar 

  • Eidem EJ, Landmark K (2013) Acoustic seabed classification using QTC IMPACT on single-beam echo sounder data from the Norwegian Channel, northern North Sea. Cont Shelf Res 68:1–14

    Article  Google Scholar 

  • Elvenes S, Dolan MF, Buhl-Mortensen P, Bellec VK (2014) An evaluation of compiled single-beam bathymetry data as a basis for regional sediment and biotope mapping. ICES J Mar Sci J Cons 71(4):867–881

    Article  Google Scholar 

  • Embling CB, Illian J, Armstrong E, van der Kooij J, Sharples J, Camphuysen KC, Scott BE (2012) Investigating fine-scale spatio-temporal predator-prey patterns in dynamic marine ecosystems: a functional data analysis approach. J Appl Ecol 49(2):481–492

    Article  Google Scholar 

  • Febrero-Bande M, González-Manteiga W (2013) Generalized additive models for functional data. TEST 22(2):278–292

    Article  Google Scholar 

  • Febrero-Bande M, Oviedo de la Fuente M (2012) Statistical computing in functional data analysis: the R package fda.usc. J Stat Softw 51(4):1–28

    Article  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer Series in Statistics. Springer, New York

    Google Scholar 

  • Ferretti R, Bibuli M, Caccia M, Chiarella D, Odetti A, Ranieri A, Zereik E, Bruzzone G (2017) Machine learning methods for acoustic-based automatic posidonia meadows detection by means of unmanned marine vehicles. In: OCEANS 2017-Aberdeen. IEEE, pp 1–6

  • Halley V, Bruce E (2007) Thematic accuracy assessment of acoustic seabed data for shallow benthic habitat mapping. Int J Environ Stud 64(1):93–107

    Article  Google Scholar 

  • Hamilton LJ (2001) Acoustic seabed classification systems. Technical report, Maritime Operations Division Aeronautical and Maritime Research Laboratory, Australia

  • Hamilton L (2011) Acoustic seabed segmentation for echosounders through direct statistical clustering of seabed echoes. Cont Shelf Res 31(19):2000–2011

    Article  Google Scholar 

  • Hasan RC, Ierodiaconou D, Laurenson L (2012) Combining angular response classification and backscatter imagery segmentation for benthic biological habitat mapping. Estuar Coast Shelf Sci 97:1–9

    Article  Google Scholar 

  • Heald GJ, Pace NG (1996) An analysis of 1st and 2nd backscatter for seabed classification. In: Papadakis JS (ed) Proceedings of the 3rd European conference on underwater acoustics, vol 2, pp 649–654

  • Kenny A, Cato I, Desprez M, Fader G, Schüttenhelm R, Side J (2003) An overview of seabed-mapping technologies in the context of marine habitat classification. ICES J Mar Sci J Cons 60(2):411–418

    Article  Google Scholar 

  • Legendre P, Ellingsen KE, Bjørnbom E, Casgrain P (2002) Acoustic seabed classification: improved statistical method. Can J Fish Aquat Sci 59(7):1085–1089

    Article  Google Scholar 

  • Montero P, Vilar JA (2014) Tsclust: an R package for time series clustering. J Stat Softw 62(1):1–43

    Article  Google Scholar 

  • Moyer RP, Riegl B, Banks K, Dodge RE (2005) Assessing the accuracy of acoustic seabed classification for mapping coral reef environments in South Florida (Broward County, USA). Rev Biol Trop 53:175–184

    Google Scholar 

  • Naya S, Tarrío-Saavedra J, López-Beceiro J, Francisco-Fernández M, Flores M, Artiaga R (2014) Statistical functional approach for interlaboratory studies with thermal data. J Therm Anal Calorim 118(2):1229–1243

    Article  Google Scholar 

  • Orlowski A (1984) Application of multiple echoes energy measurements for evaluation of sea bottom type. Oceanologia 19:61–78

    Google Scholar 

  • Pouliquen E, Bergem O, Pace NG (1999) Time-evolution modeling of seafloor scatter. I. Concept. J Acoust Soc Am 105(6):3136–3141

    Article  Google Scholar 

  • Ramsay J, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Rattray A, Ierodiaconou D, Laurenson L, Burq S, Reston M (2009) Hydro-acoustic remote sensing of benthic biological communities on the shallow South East Australian continental shelf. Estuar Coas Shelf Sci 84(2):237–245

    Article  Google Scholar 

  • Reynolds AP, Richards G, de la Iglesia B, Rayward-Smith VJ (2006) Clustering rules: a comparison of partitioning and hierarchical clustering algorithms. J Math Model Algorithms 5(4):475–504

    Article  Google Scholar 

  • Riegl BM, Purkis SJ (2005) Detection of shallow subtidal corals from IKONOS satellite and QTC View (50, 200 kHz) single-beam sonar data (Arabian Gulf; Dubai, UAE). Remote Sens Environ 95(1):96–114

    Article  Google Scholar 

  • Rodríguez-Pérez D, Sánchez-Carnero N, Freire J (2014a) ECOSONS software. http://www.kartenn.es. Accessed Jan 2019

  • Rodríguez-Pérez D, Sánchez-Carnero N, Freire J (2014b) A pulse-length correction to improve energy-based seabed classification in coastal areas. Cont Shelf Res 77:1–13

    Article  Google Scholar 

  • Somerton DA, McConnaughey RA, Intelmann SS (2017) Evaluating the use of acoustic bottom typing to inform models of bottom trawl sampling efficiency. Fish Res 185:14–16

    Article  Google Scholar 

  • Tarrío-Saavedra J, Naya S, Francisco-Fernández M, Artiaga R, López-Beceiro J (2011) Application of functional ANOVA to the study of thermal stability of micro-nano silica epoxy composites. Chemom Intell Lab Syst 105:114–124

    Article  Google Scholar 

  • Tarrío-Saavedra J, Sánchez-Carnero N, Prieto A (2017) Statistical methods for automatic identification of seabed. In: Vega Sáenz A, Pereira NN, Carral Couce LM, Fraguela Formoso JA (eds) Proceedings of the 25th Pan-American Conference of Naval Engineering—COPINAVAL, Springer, pp 303–313

  • Tegowski J (2005) Acoustical classification of the bottom sediments in the southern baltic sea. Quat Int 130(1):153–161

    Article  Google Scholar 

  • van Walree PA, Tegowski J, Laban C, Simons DG (2005) Acoustic seafloor discrimination with echo shape parameters: a comparison with the ground truth. Cont Shelf Res 25(18):2273–2293

    Article  Google Scholar 

  • White WH, Harborne AR, Sotheran I, Walton R, Foster-Smith R (2003) Using an acoustic ground discrimination system to map coral reef benthic classes. Int J Remote Sens 24(13):2641–2660

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Xunta de Galicia through the Centro Singular de Investigación de Galicia ED431G/01, Grupos de Referencia Competitiva ED431C-2016-015, and EM2013/052 projects (Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia), in addition to MINECO Grants MTM2014-52876-R and MTM2017-82724-R, all of them through the ERDF. Also, the authors wish to acknowledge J. A. Rodríguez “Rodri”, skipper of the boat “Betsaida”, from the Ecology and Marine Conservation Research Group, University of Murcia, and Gaston Trobbiani from CESIMAR, for their help with the field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Prieto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarrío-Saavedra, J., Sánchez-Carnero, N. & Prieto, A. Comparative Study of FDA and Time Series Approaches for Seabed Classification from Acoustic Curves. Math Geosci 52, 669–692 (2020). https://doi.org/10.1007/s11004-019-09807-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-019-09807-7

Keywords

Mathematics Subject Classification

Navigation