Skip to main content

Advertisement

Log in

A Fast Approximation for Seismic Inverse Modeling: Adaptive Spatial Resampling

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

Seismic inverse modeling, which transforms appropriately processed geophysical data into the physical properties of the Earth, is an essential process for reservoir characterization. This paper proposes a work flow based on a Markov chain Monte Carlo method consistent with geology, well-logs, seismic data, and rock-physics information. It uses direct sampling as a multiple-point geostatistical method for generating realizations from the prior distribution, and Metropolis sampling with adaptive spatial resampling to perform an approximate sampling from the posterior distribution, conditioned to the geophysical data. Because it can assess important uncertainties, sampling is a more general approach than just finding the most likely model. However, since rejection sampling requires a large number of evaluations for generating the posterior distribution, it is inefficient and not suitable for reservoir modeling. Metropolis sampling is able to perform an equivalent sampling by forming a Markov chain. The iterative spatial resampling algorithm perturbs realizations of a spatially dependent variable, while preserving its spatial structure by conditioning to subset points. However, in most practical applications, when the subset conditioning points are selected at random, it can get stuck for a very long time in a non-optimal local minimum. In this paper it is demonstrated that adaptive subset sampling improves the efficiency of iterative spatial resampling. Depending on the acceptance/rejection criteria, it is possible to obtain a chain of geostatistical realizations aimed at characterizing the posterior distribution with Metropolis sampling. The validity and applicability of the proposed method are illustrated by results for seismic lithofacies inversion on the Stanford VI synthetic test sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Andrieu C, Thoms J (2008) A tutorial on adaptive MCMC. Stat Comput 18:343–373

    Article  Google Scholar 

  • Andrieu C, Freitas ND, Doucet A, Jordan MI (2003) An introduction to MCMC for machine learning. Mach Learn 50:5–43

    Article  Google Scholar 

  • Arpat BG (2005) Sequential simulation with patterns. Dissertation, Stanford University

  • Avseth P, Mukerji T, Mavko G (2005) Quantitative seismic interpretation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Azevedo L, Nunes RF, Almeida JA, Pinheiro LM, Caeiro MH, Correia PJ, Soares A (2012) Seismic attributes for constraining geostatistical seismic inversion. In: 9th International geostatistics congress, June 11–15, 2012, Oslo, Norway

  • Bachrach R (2006) Joint estimation of porosity and saturation using stochastic rock-physics modeling. Geophysics 71(5):O53–O63. doi:10.1190/1.2235991

    Article  Google Scholar 

  • Bleistein N, Gray SH (1985) An extension of the Born inversion procedure to depth dependent velocity profiles. Geophys Prosp 33(7):999–1022

    Article  Google Scholar 

  • Bosch M, Cara L, Rodrigues J, Navarro A, Diaz M (2004) The optimization approach to lithological tomography: combining seismic data and petrophysics for porosity prediction. Geophysics 69:1272–1282

    Article  Google Scholar 

  • Bosch M (1999) Lithologic tomography: from plural geophysical data to lithology estimation. J Geophys Res 104:749–766

    Article  Google Scholar 

  • Bosch M, Mukerji T, Gonzalez EF (2010) Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: a review. Geophysics 75(5):165–176

    Article  Google Scholar 

  • Castro S, Caers J, Mukerji T (2005) The Stanford VI reservoir. 18th annual report, Stanford Center for Reservoir Forecasting, Stanford University

  • Contreras A, Torres-Verdin C, Chesters W, Kvien K, Fasnacht T (2005) Joint stochastic inversion of 3D pre-stack seismic data and well logs for high-resolution reservoir characterization and petrophysical modeling: application to deepwater hydrocarbon reservoirs in the central Gulf of Mexico. In: 75th annual international meeting, SEG expanded abstracts, pp 1343–1346

  • Doyen PM (2007) Seismic reservoir characterization: an earth modeling perspective. EAGE Publications, Houten

    Google Scholar 

  • Dubrule O (2003) Geostatistics for seismic data integration in earth models. SEG Publications, Tulsa

    Book  Google Scholar 

  • Eidsvik J, Avseth P, Omre H, Mukerji T, Mavko G (2004) Stochastic reservoir characterization using prestack seismic data. Geophysics 69:978–993. doi:10.1190/1.1778241

    Article  Google Scholar 

  • Gonzalez EF, Mukerji T, Mavko G (2008) Seismic inversion combining rock physics and multiple-point geostatistics. Geophysics 73(1):R11–R21

    Article  Google Scholar 

  • Griffin JE, Walker SG (2013) On adaptive Metropolis–Hasting methods. Stat Comput 23:123–134. doi:10.1007/s11222-011-9296-2

    Article  Google Scholar 

  • Haario H, Saksman E, Tamminen J (2001) An adaptive Metropolis algorithm. Bernoulli 7:223–242

    Article  Google Scholar 

  • Hansen TM, Mosegaard K, Cordua KC (2008) Using geostatistics to describe complex a priori information for inverse problems. In: Proceedings from VIII international geostatistics congress, vol 1, pp 329–338

  • Hansen TM, Cordua KC, Mosegaard K (2012) Inverse problems with non-trivial priors—efficient solution through sequential gibbs sampling. Comput Geosci 16(3):593–611

    Article  Google Scholar 

  • Honarkah M, Caers J (2012) Direct pattern-based simulation of non-stationary geostatistical models. Math Geosci 44(6):651–672

    Article  Google Scholar 

  • Jeong C (2014) Quantitative reservoir characterization integrating seismic data and geological scenario uncertainty. Dissertation, Stanford University

  • Larsen AL, Ulvmoen M, Omre H, Buland A (2006) Bayesian lithology/fluid prediction and simulation on the basis of a Markov-chain prior model. Geophysics 71(5):R69–R78. doi:10.1190/1.2245469

    Article  Google Scholar 

  • Mariethoz G, Renard P, Straubhaar J (2010a) The direct sampling method to perform multiple-points geostatistical simulations. Water Resour Res 46:W11536

    Google Scholar 

  • Mariethoz G, Renard P, Caers J (2010b) Bayesian inverse problem and optimization with iterative spatial resampling. Water Resour Res 46:W11530

    Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  Google Scholar 

  • Mosegaard K, Tarantola A (1995) Monte Carlo sampling of solutions to inverse problems. J Geophys Res 100(B7):12431–12447

    Article  Google Scholar 

  • Mukerji T, Avseth P, Mavko G, Takahashi I, Gonzalez EF (2001a) Statistical rock physics: combining rock physics, information theory, and geostatistics to reduce uncertainty in seismic reservoir characterization. Lead Edge 20(3):313–319

    Article  Google Scholar 

  • Mukerji T, Jorstad A, Avseth P, Mavko G, Granli JR (2001b) Mapping lithofacies and pore-fluid probabilities in a North Sea reservoir: seismic inversions and statistical rock physics. Geophysics 66:988–1001

    Article  Google Scholar 

  • Mukerji T, Mavko G, Rio P (1997) Scales of reservoir heterogeneities and impact of seismic resolution on geostatistical integration. Math Geol 29(7):933–950

    Article  Google Scholar 

  • Roberts GO, Rosenthal JS (2009) Examples of adaptive MCMC. J Comput Graph Stat 18:349–367

    Article  Google Scholar 

  • Scheidt C, Caers J (2009) Representing spatial uncertainty using distances and kernels. Math Geosci 41(4):397–419

    Article  Google Scholar 

  • Scheidt C, Jeong C, Mukerji T, Caers J (2015) Probabilistic falsification of prior geologic uncertainty with seismic amplitude data: application to a turbidite reservoir case. Geophysics 80(5):M89–M12. doi:10.1190/geo2015-0084.1

  • Strebelle SB, Journel AG (2001) Reservoir modeling using multiple point statistics. In: SPE 71324 presented at the 2001 SPE annual technical conference and exhibition, New Orleans, 30 September–3 October 2001

  • Tahmasebi P, Hezarkhani A, Sahimi M (2012) Multiple-point geostatistical modeling based on the cross-correlation functions. Comput Geosci 16:779–797. doi:10.1007/s10596-012-9287-1

    Article  Google Scholar 

  • Tarantola A (1987) Inverse problem theory: methods for data fitting and model parameter estimation. Elsevier, Amsterdam

    Google Scholar 

  • Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM, Philadelphia

    Book  Google Scholar 

  • Ulvmoen M, Omre H (2010) Improved resolution in Bayesian lithology/fluid inversion from prestack seismic data and well observations: part 1—methodology. Geophysics 75(2):R21–R35

    Article  Google Scholar 

  • von Seggern DH (1991) Spatial resolution of acoustic imaging with the Born approximation. Geophysics 56(8):1185–1202

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Stanford Center for Reservoir Forecasting (SCRF) sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheolkyun Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, C., Mukerji, T. & Mariethoz, G. A Fast Approximation for Seismic Inverse Modeling: Adaptive Spatial Resampling. Math Geosci 49, 845–869 (2017). https://doi.org/10.1007/s11004-017-9693-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-017-9693-y

Keywords

Navigation