Skip to main content
Log in

Studies on the properties of high-velocity oxy-fuel thermal spray coatings for higher temperature applications

  • Science for Production
  • Published:
Materials Science Aims and scope

Abstract

Materials operating at high temperatures in corrosive media suffer erosion-corrosion wear, oxidation, and hot corrosion. Among various methods used for the protection of the surfaces against degradation, we can especially mention the technology of application of coatings by high-velocity oxy-fuel spraying, which gives coatings which high strength and hardness, low (less than 1%) porosity, and high erosion-corrosion and wear resistances. The characteristics of the coatings and their protective properties are presented. The role of some high-velocity oxy-fuel coatings in the protection of metals and alloys against degradation at high temperatures in various media is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, New York (1995).

    Google Scholar 

  2. P. S. Sidky and M. G. Hocking, “Review of inorganic coatings and coating processes for reducing wear and corrosion,” Brit. Corr. J., 34, No. 3, 171–183 (1999).

    Article  CAS  Google Scholar 

  3. M. H. Li, X. F. Sun, J. G. Li, et. al., “Oxidation behavior of a single-crystal Ni-base superalloy in air-I: at 800 and 900°C,” Oxid. Met., 59, No. 5–6, 591–605 (2003).

    Article  CAS  Google Scholar 

  4. T. Burakowski and T. Wierzchon, Surface Engineering of Metals, Principles, Equipment, Technology, CRC Press, N.W., Boca Raton, Florida (1999).

    Google Scholar 

  5. G. R. Heath, P. Heimgartner, G. Irons, R. Miller, and S. Gustafsson, “An assessment of thermal spray coating technologies for high temperature corrosion protection,” Mater. Sci. Forum, 251–254, 809–816 (1997).

    Article  Google Scholar 

  6. M. F. Stroosnijder, R. Mevrei, and M. J. Bennet, “The interaction of surface engineering and high temperature corrosion protection,” Mater. High Temp., 12, No. 1, 53–66 (1994).

    CAS  Google Scholar 

  7. M. Yoshiba, “Effect of hot corrosion on the mechanical performances of superalloys and coating systems,” Cor. Sci., 35, No. 5–8, 1115–1124. (1993)

    Article  CAS  Google Scholar 

  8. F. H. Stott, D. J. De Wet, and R. Taylor, “The degradation resistance of thermal barrier coatings to molten deposits at very high temperatures,” Trans. Mater. Res. Soc. Jpn., 14A, 135–140 (1994).

    CAS  Google Scholar 

  9. J. A. Conner and W. B. Connor, “Ranking protective coatings: Laboratory Vs. Field Experience,” JOM, 35–38 (1994).

  10. J. R. Nicholls, “Designing oxidation-resistant coatings,” JOM, 28–35 (2000).

  11. P. S. Uu, K. M. Liang, and S. R. Gu, “High-temperature oxidation behavior of aluminide coatings on a new cobalt-base superalloy in air,” Cor. Sci., 43, 1217–1226 (2001).

    Article  Google Scholar 

  12. B. Bhushan and B. K. Gupta, Handbook of Tribology: Material Coating and Surface Treatments, McGraw-Hill, New York (1991).

    Google Scholar 

  13. A. R. Nicoll, Chapter 13: “The production and performance evaluation of high-temperature coatings,” in K. N. Stratford, K. Datta, and C. G. Googan (editors), Coatings and Surface Treatment for Corrosion and Wear Resistance, Inst. of Corros. Sci. and Technol., Ellis Horwood, Chichester, Birmingham, UK (1984).

    Google Scholar 

  14. J. T. DeMasi-Marcin and D. K. Gupta, “Protective coatings in the gas turbine engine,” Surf. Coat. Technol., 68–69, 1–9 (1994).

    Article  Google Scholar 

  15. J. Illavsky, J. Pisacka, P. Chraska, et. al., “Microstructure-wear and corrosion relationships for thermally sprayed metallic deposits,” in: Proc. of the First Internat. Thermal Spray Conf. (May 2000), Montreal, Canada (2000), pp. 449–454.

  16. J. R. Nicholls and D. J. Scephenson, Chapter 22: “High-temperature coatings for gas turbines,” in J. H. Westbrook and F. L. Fleischer (editors), Intermetallic Compounds, Principles and Practice, Vol. 2: Practice, Wiley, England (1995).

    Google Scholar 

  17. H. Singh, Hot Corrosion Studies of Plasma Sprayed Coatings Over Some Ni-and Fe-Based Superalloys, Ph.D. Thesis, Met. & Mat. Eng. Dept., Indian Institute of Technology Roorkee, Roorkee (2005).

    Google Scholar 

  18. O. Knotek, “Thermal spraying and detonation spray gun processes,” in: R. F. Bunshah (editor), Handbook of Hard Coatings: Deposition Technologies, Properties and Applications, Noyes Publ., Park Ridge, NJ, USA, William Andrew Publ., LLC, Norwich, New York, NY, USA (2001), pp. 77–107.

    Google Scholar 

  19. J. Stokes, The Theory and Application of the HVOF Thermal Spray Process, Dublin City University, Dublin (2005).

    Google Scholar 

  20. V. V. Sobolev, J. M. Guiiemany, and J. Nutting, HVOF Spraying, B0655, Maney, IOM3 (2004).

  21. R. W. Smith and R. Knight, “Thermal spraying I: Powder consolidation from coating to forming,” J. Mater., 47, No. 8, 32–39 (1995).

    CAS  Google Scholar 

  22. H. Herman, S. Sampath, and R. Mccune, “Thermal spray: current status and future trends,” MRS Bull., 25, No. 7, 17–25 (2000).

    CAS  Google Scholar 

  23. S. C. Modi and Calla Ekiavya, “Structure and properties of HVOF sprayed NiCrBSi coatings,” in: Thermal Spray 2001: New Surfaces for New Millennium, ASM International, Materials Park. Ohio, USA, 281–284 (2001).

    Google Scholar 

  24. B. Q. Wang and Z. R. Shui, “The hot erosion behavior of HVOF chromium carbide-metal cermet coatings sprayed with different powders,” Wear, 253, 550–557 (2002).

    CAS  Google Scholar 

  25. D. W. Parker and G. L. Kulner, “HVOF-spray technology-poised for growth,” J. Adv. Mater. Proc., 139, No. 4 (1991).

    Google Scholar 

  26. Elsmer Perkin, Diamond Jet System and Gun Manual, Metco, (1989).

  27. J. M. Guiiemany, J. Fernandez, J. M. Paco, and De Sanchez, “Corrosion resistance of HVOF WC-Co and TiC/Ni-Ti coatings sprayed on commercial steel,” J. Surf. Eng., 14, 133 (1998).

    Google Scholar 

  28. A. Collazo, X. R. Novo, and C. Perez, “Corrosion behavior of cermet coatings in artificial seawater,” Electrochim Acta, 44, 4289 (1999).

    Article  CAS  Google Scholar 

  29. M. A. Tani, A. Nakahira, and Y. Takatani, in: Proc. of the First Internat. Thermal Spray Conf. (May 2000), ASM International, Montreal, Canada (2000), p. 1025.

    Google Scholar 

  30. P. Gu, B. Arsenault, J. J. Beaudoin, J. G. Legoux, et al., “Polarization resistance of stainless steel-coated rebars,” Cem. Cone. Res., 28, 321 (1998).

    Article  CAS  Google Scholar 

  31. A. J. Sturgeon and D. C. Buxton, “The electrochemical corrosion behavior of HVOF sprayed coatings, ” in: Proc. of the First Internat. Thermal Spray Conf., (May 2000), ASM International, Montreal, Canada (2000), p. 1011.

    Google Scholar 

  32. D. Harvey, O. Lunder, and R. Henriksen, in: Proc. of the First Internat. Thermal Spray Conf., (May 2000), ASM International, Montreal, Canada (2000), p. 991.

    Google Scholar 

  33. L N. Moskowitz, “Application of HVOF thermal spraying to solve corrosion problems in the petroleum industry,” in: Proc. of 13th Internat. Thermal Spray Conf., Florida, USA (1992), pp. 611–618.

  34. S. Sampath and R. McCune, “Thermal-spray processing of materials,” MRS Bulletin, 25, No. 7, 12 (2000).

    Google Scholar 

  35. J. Stokes and L. Looney, “HVOF system definition to maximize the thickness of formed components, ” Surf. Coat. Technol., 48, No. 1, 18–24 (2001).

    Article  Google Scholar 

  36. K. W. Kowalsky, D. R. Marantz, M. F. Smith, and W. L. Oberkampf, in: T. F. Bernecki (editor), Thermal Spray Research and Applications, ASM International, Ohio (1991), pp. 587–592.

    Google Scholar 

  37. B. Irving, R. Knight, and R. W. Smith, “The HVOF Process: The hottest process in thermal spray technology,” Welding J., 72, 25–30 (1993).

    CAS  Google Scholar 

  38. R. Knight, R. W. Smith, Z. Xiao, and T. T. Hoffman, “Particle velocity measurements in HVOF and APS systems,” in: Proc. 7th Nat. Thermal Spray Conf. [NTSC’94], ASM International, Boston, MA (1994), pp. 331–336.

    Google Scholar 

  39. H. Kreye, in: Proc. of the 4th Conf. on HVOF Spraying, German Thermal Spray Society, Hö llriegelskreuth (1997), pp. 13–21.

  40. H. L. De Villiers Lovelock, P. W. Richter, J. M. Benson, and P. M. Young, “Parameter study of HP/HVOF deposited WC-Co coatings,” J. Thermal Spray Technol., 7, No. 1 (1998).

    Google Scholar 

  41. L. Jacobs, M. M. Hyland, and M. De Bonte, “Comparative study of WC-cermet coatings sprayed via the HVOF and HVAF process,” J. Thermal Spray Technol., 7, No. 2 (1998).

    Google Scholar 

  42. M. M. Helali and M. S. J. Hashmi, “A comparative study of plasma spraying and high velocity oxy-fuel (HVOF) thermal spraying,” in: Proc. of the 10th Conf. of the Irish Manufacturing Committee (IMC 10), Galway, Ireland (1992), pp. 377–387.

  43. S. Fantassi, M. Vardelle, P. Fauchais, and C. Moreau, “Investigation of the splat formation versus different paniculate temperatures and velocities prior to impact,” in: Proc. of 13th Internat. Thermal Spray Conf., Florida, USA (1992), pp. 755–760.

  44. D. T. Gawne, B. J. Griffiths, and G. Dong, “Splat morphology and adhesion of thermally sprayed coatings,” in: Proc. Internat. Thermal Spray Conference (TTSC.95), Kobe (1995), pp. 779–784.

  45. M. P. Kanouff, R. A. Neiser (Jr.), and T. J. Roemer, “Surface roughness of thermal spray coatings made with off-normal spray angles,” J. Thermal Spray Technology, 7, No. 2 (1998).

    Google Scholar 

  46. J. Hailing, Introduction: Recent Developments in Surface Coating and Modification Processes, MEP, London (1985).

    Google Scholar 

  47. Elmer Perkin, METCO Thermal Spraying: General Overview (1989).

  48. D. C. Crawmer, J. D. Krebsback, and W. L. Riggs, “Coating development of HVOF process using design of experiments,” in: Proc. of the 13th Internat. Thermal Spraying Conf., Florida (1992), pp. 127–136.

  49. W. J. Jarosinski, M. F. Gruninger, and C. H. Londry, “Characterization of tungsten carbide cobalt powder and HVOF coatings,” in: Proc. of the Fifth Nat. Thermal Spray Conf., California (1993), pp. 153–158.

  50. X. Provot, H. Burlet, M. Vardayoulias, et. al., “Comparative studies of microstructures, residual stress distributions, and wear properties for HVOF and APS WC-Co coatings of Ti6Al4V,” in: Proc. of NTSC, Anaheim, USA (1993), pp. 159–166.

  51. E. Lugscheider, C. Herbst, and L. Zhao, “Parameter studies on high-velocity oxy-fuel spraying of MCrAlY coatings,” Surf. Coat. Tech., 108–109, 16–23 (1998).

    Article  Google Scholar 

  52. L. Zhao, E. Lugscheider, A. Fischer, and A. Reimann, “Thermal spraying of high nitrogen duplex austenitic-ferritic steel,” Surf. Coat. Technol., 141, 208–215 (2001).

    Article  CAS  Google Scholar 

  53. L. Zhao and E. Lugscheider, “High velocity oxy-fuel spraying of a NiCoCrAlY and an intermetallic NiAl-TaCr alloy,” Surf. Coat. Technol., 149, 230–235 (2002).

    Article  Google Scholar 

  54. H. Hamatani, Y. Ichiyama, and J. Kobayashi, “Mechanical and thermal properties of HVOF sprayed Ni-based alloys with carbide,” Sci. Technol. Adv. Mater., 3, No. 4, 319–326 (2002).

    Article  CAS  Google Scholar 

  55. A. H. Dent, A. J. Horlock, D. G. McCartney, and S. J. Harris, “Microstructural characterization of a Ni-Cr-B-C based alloy coating produced by high velocity oxy-fuel thermal spraying,” Surf. Coat. Technol., 139, 244–250 (2001).

    Article  CAS  Google Scholar 

  56. G. Kong, D. Zhang, P. D. Brown, el. al., “Microstructural characterization of HVOF thermally sprayed Stellite 6,” Mater. Sci. Technol., 19, 1003–1011 (2003).

    Article  CAS  Google Scholar 

  57. D. Zhang, S. J. Harris, and D. G. McCartney, “Microstructure formation and corrosion behavior in HVOF-sprayed Inconel 625 coatings,” Mater. Sci. Eng. A, 344, 45–56 (2003).

    Article  Google Scholar 

  58. T. S. Sidhu, S. Prakash, and R. D. Agrawal, “Characterization of NiCr wire coatings on Ni-and Fe-based superalloys by the HVOF process,” Surf. Coat. Technol. (to be published).

  59. J. M. Guilemany, L. Cabot, J. Femandez, et al, in: Proc. 5th Europ. Conf. on Advanced Materials and Applications (Euromat 97) (Maastricht, April 1997), Vol. 1, Ferns, The Netherlands (1997), pp. 771–774.

    Google Scholar 

  60. W.-M. Zhao, Y. Wang, T. Han, K.-Y. Wu, and J. Xue, “Electrochemical evaluation of corrosion resistance of NiCrBSi coatings deposited by HVOF,” Surf. Coat. Technol., 183, 118–125 (2004).

    Article  CAS  Google Scholar 

  61. W.-M. Zhao, Y. Wang, L.-X. Dong, K.-Y. Wu, and J. Xue, “Corrosion mechanism of NiCrBSi coatings deposited by HVOF,” Surf. Coat Technol., 190, 293–298 (2005).

    Article  CAS  Google Scholar 

  62. G. Barbezal, A. R. Nicoll, and A. Sickinger, “Abrasion, erosion and scuffing resistance of carbide and oxide ceramic thermal-sprayed coatings for different applications,” Wear, 162, 529 (1993).

    Article  Google Scholar 

  63. L. Russo and M. Dorfmann, “Thermal spraying: current status and future trends,” in: High Temperature Society of Japan (1995), p. 681.

  64. S. Zimmermann and H. Kreye, “Chromium carbide coatings produced with various HVOF spray systems, ” in: Proc. of the 9th Nat. Thermal Spray Conf., ASM International, Materials Park, Ohio (1996), p. 147.

    Google Scholar 

  65. K. J. Stein, B. S. Schorr, and A. R. Marder, “Erosion of thermal spray MCr-Cr3C2 cermet coatings,” Wear, 224, 153 (1999).

    Article  CAS  Google Scholar 

  66. Z. Anfeng, W. Yuyue, X. Jiandong, and Li Chanqjiu, “Erosion-corrosion characteristic and electrochemical behavior of high velocity oxy-fuel sprayed coatings and two types of steels,” J. Xi’an Jiaotong Univ., 37, No. 11, 1150–1153, 1158 (2003).

    Google Scholar 

  67. J. Kawakita, S. Kuroda, T. Fukushima, and T. Kodama, “Development of dense corrosion resistant coatings by an improved HVOF spraying process,” Surf. Coat. Technol., 4, 281–289 (2003).

    CAS  Google Scholar 

  68. R. Thorpe, H. Kopeck, and N. Gagne, “HVOF thermal spray technology,” J. Adv. Mater. Proc., 157, No. 4 (2000).

    Google Scholar 

  69. A. W. Batchelor, L N. Lam, and M. Chandrasekaran, Discrete Coatings. Materials Degradation and its Control by Surface Engineering, 2nd Ed., Imperial College Press (2003).

  70. P. Fauchais, “Topical Review: Understanding Plasma Spraying,” J. Phys. D: Appl. Phys., 37, R86–R108 (2004).

    Article  CAS  Google Scholar 

  71. C.-J. Li, K-K. Wang, and A. Ohmori, “Effect of melting state of spray particles on the adhesion strength of HVOF nickel-based alloy coatings,” in: Thermal Spray Surface Engineering via Applied Research: Proc. Internat. Thermal Spray Conf.,(Montreal May 2000), Montreal, Canada, ASM International, USA (2000), pp. 791–796.

    Google Scholar 

  72. S. T. Bluni and A. R. Mardar, “Effects of thermal spray coating composition and microstructure on coating response and substrate protection at high temperatures,” Corros., 52, No. 3, 213–218 (1996).

    Article  CAS  Google Scholar 

  73. J. M. Guilemany, J. Femandez, J. Delgado, et. al., “Effects of thickness coating on the electrochemical behavior of thermal spray Cr3C2-NiCr coatings,” Surf. Coat. Technol., 153, No. 2–3, 107–113 (2002).

    Article  CAS  Google Scholar 

  74. M. A. Uusitalo, P. M. J. Vuoristo, and T. A. Mäntylä, “High temperature corrosion of coatings and boiler steels in oxidizing chlorine-containing atmosphere,” Mater. Sci. Eng. A, 346, No. 1–2, 168–177 (2003).

    Article  Google Scholar 

  75. W. Brandl, G. Marginean, D. Maghet, and D. Utu, “Effects of specimen treatment and surface preparation on the isothermal oxidation behavior of the HVOF-sprayed MCrAlY coatings,” Surf. Coat. Technol., 188–189, 20–26 (2004).

    Article  CAS  Google Scholar 

  76. J. Calero, Characterization of Cr3C2-NiCr Coatings Obtained by HVOF Spray System and Process Interpretation Using Mathematical Simulation of the Process, Ph.D. Thesis, Barcelona, Spain (1997).

  77. A. L. Dwyer, S. A. Jones, R, J. Wykle, et al., “HVOF Repair of steering rams for the USS saipan, ” in: Proc. of the 8th Internat. Thermal Spray Conf., Houston (1995), pp. 615–620.

  78. B. Q. Wang and K. Luer, in: Proc. of the 7th National Thermal Spray Conf. (June 1994), ASM International, Boston, Massachusetts, USA (1994), pp. 115–120.

    Google Scholar 

  79. Y. Fukuda and M. Kumon, in: Proc. of the 14th Internat. Thermal Spray Conf. (May 1995), ASM International, Kobe, Japan (1995), pp. 107–111.

    Google Scholar 

  80. P. Vuoristo, K. Niemi, A. Makela, and T. Mäntylä, “Abrasion and erosion wear resistance of Cr3C2-NiCr coatings prepared by plasma, detonation, and high-velocity oxy-fuel spraying,” in: Proc. 7th Nat. Thermal Spray Conf. (June 1994), Boston (1994), pp. 121–126.

  81. J. M. Guilemany, J. Fernanda, and J. Delgado, “Electrochemical measurements and characterization of a thermal sprayed HVOF Cr3C2-NiCr coating in a corrosive environment,” in: Proc. of the United Thermal Spray Conf., Düsseldorf (1997), pp. 474–478.

  82. H. Suegama, C. S. Fugivara, A. V. Benedetti, et. al., “Electrochemical behavior of thermally sprayed Cr3C2-NiCr coatings in 0.5 MH2SO4 media,” J. Appl. Chem., 32, 1287–1295 (2002).

    CAS  Google Scholar 

  83. L. Fedrizzi, S. Rossi, R. Cristei, and P. L. Bonora, “Corrosion and wear behavior of HVOF cermet coatings used to replace hard chromium,” Electrochimica Acta, 49, 2803–2814 (2004).

    Article  CAS  Google Scholar 

  84. J. K. N. Murthy and B. Venkataraman, “Abrasive wear behavior of WC-Co Cr and Cr3C2-20(NiCr) deposited by HVOF and detonation spray processes,” Surf. Coat Technol. (2004), (to be published).

  85. B. G. Seong, S. Y. Hwang, and K. Y. Kim, “High-temperature corrosion of recuperators used in steel mills,” Surf. Coat. Technol., 126, No. 2–3, 256–265 (2000).

    Article  CAS  Google Scholar 

  86. B. Q. Wang and K. Luer, “The erosion-oxidation behavior of HVOF Cr3C2-NiCr cermet coating, ” Wear, 174, No. 1–2, 177–185 (1994).

    Article  CAS  Google Scholar 

  87. T. S. Sidhu, R. D. Agrawal, and S. Prakash, “Performance of high velocity oxy-fuel sprayed coatings on a Fe-based superalloy in H2SO4-60% V2O5 environment at 900°C. Part II: Hot corrosion behavior of the coatings,” J. Mater. Eng. Perform. (2005), (to be published).

  88. G. W. Coward, “Overview: protective coatings—purpose, role, and design,” Mat. Sci. Technol., 2, 194–200 (1986).

    Google Scholar 

  89. R. J. Link, N. Birks, F. S. Pettit, and F. Dethorey, “The response of alloys to erosion-corrosion at high temperatures,” Oxid. Met., 49, No. 3–4, 213–236 (1998).

    Article  CAS  Google Scholar 

  90. H. Edris, D. G. McCartney, and A. J. Sturgeon, “Microstructural characterization of high velocity oxy-fuel sprayed coatings of Inconel 625,” J. Mater. Sci., 32, 863 (1997).

    Article  CAS  Google Scholar 

  91. Y. Kawahara, “Development and application of high temperature corrosion-resistant materials and coatings for advanced waste-to-energy plants,” Mater. High Temp., 14, No. 3, 261–268 (1997)

    Google Scholar 

  92. J. Tuominen, Vuoristo, T. Mantyla, et, al., “Corrosion behavior of HVOF-sprayed and Nd-YAG laser-remelted high-chromium, nickel-chromium coatings,” J. Therm. Spray Technol., 11, No. 2, 233–243 (2002).

    Article  CAS  Google Scholar 

  93. T. Sundararajan, S. Kuroda, T. Itagaki, and F. Abe, “Steam oxidation resistance of Ni-Cr thermal spray coatings on 9Cr-1Mo steel. Part 1: 80Ni-20Cr,” ISIJ Int., 43, No. 1, 95–103 (2003).

    CAS  Google Scholar 

  94. T. Sundararajan, S. Kuroda, T. Itagaki, and F. Abe, “Steam oxidation resistance of Ni-Cr thermal spray coatings on 9Cr-1Mo steel. Part 2: 50Ni-50Cr,” ISIJ Int., 43, No. 1, 104–111 (2003).

    CAS  Google Scholar 

  95. K. Yamada, Y. Tomono, J. Morimoto, et al., “Hot corrosion behavior of boiler tube materials in refuse incineration environment, Vacuum, 65, No. 3–4, 533–540 (2002).

    Article  CAS  Google Scholar 

  96. M. A. Vusitalo, P. M. J. Vuoristo, and T. A. Mantyla, “High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits,” Corros. Sci., 46, No. 6, 1311–1331 (2004).

    Article  CAS  Google Scholar 

  97. X. Lianyong, J. Hongyang, and H. Lixing, “High-temperature corrosion of protective coatings for boiler tubes in thermal power plants,” Trans. Tianjin University, 11, No. 3, 183–189 (2005).

    Google Scholar 

  98. F. Otsubo, H. Era, and K. Kishitake, “Structure and phases in nickel-base self-fluxing alloy coating containing high chromium and boron,” J. Therm. Spray Technol., 91, 107–113 (2000).

    Article  Google Scholar 

  99. S. Lebaili, S. Hamar, and S. Thibaull, “Equilibres liquide-solide dans le system Ni-B-Si dans la region riche en nickle,” Acta Metal., 35, No. 3, 701–710 (1987).

    Article  CAS  Google Scholar 

  100. S. C. Cha, H. W. Gudenau, and G. T. Bayer, “Comparison of corrosion behavior of thermal sprayed and diffusion-coated materials,” Mat. Cor., 53, 195–205 (2002).

    Article  CAS  Google Scholar 

  101. S. C. Cha and P. Wolpert, “High-temperature erosion and corrosion measurement of thermally sprayed materials,” Adv. Eng. Mater., 5, No. 4, 213–217 (2003).

    Article  CAS  Google Scholar 

  102. J. M. Miguel, J. M. Guliemany, and S. Vizcaino, “Tribological study of NiCrBSi coating obtained by different processes,” Tribology Intern., 36, No. 3, 181–187 (2003).

    Article  CAS  Google Scholar 

  103. K. C. Antony, “Wear-resistant cobalt-base alloys,” JOM 39, 52 (1983).

  104. P. Crook, “Properties and selection: nonferrous alloys and special-purpose materials,” in: Metals Handbook 2, 10th Edn., ASM International (1993).

  105. D. Zhang, S. J. Harris, and D. G. McCartney, in: E. Lugscheider (editor), Proc. Int. Thermal Spray Conf., DVS Verlag, Essen, Germany (2002), pp. 500–505.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Fizyko-Khimichna Mekhanika Materialiv, Vol. 41, No. 6, pp. 80–95, November–December, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidhu, T.S., Prakash, S. & Agrawal, R.D. Studies on the properties of high-velocity oxy-fuel thermal spray coatings for higher temperature applications. Mater Sci 41, 805–823 (2005). https://doi.org/10.1007/s11003-006-0047-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-006-0047-z

Keywords

Navigation