Skip to main content
Log in

Modeling the temperature-dependent Young’s modulus of short fiber reinforced metal matrix composites and its particle hybrid composites

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Knowledge of the temperature-dependent Young’s modulus (TDYM) is fundamentally important for it is a key index to access the deformation-resisting ability over a wide temperature range. In this article, considering the effects of temperature on fiber and matrix Young’s modulus, a TDYM model of short fiber reinforced metal matrix composites (SFRMMCs) is developed based on the classical shear-lag model. This model enables the prediction of Young’s modulus of SFRMMCs over a wide temperature range just requiring the material parameters at room temperature as inputs, which is convenient for engineering applications. Furthermore, the developed TDYM model can be conveniently applied to hybrid particle/short fiber metal matrix composites by taking the particle reinforced metal matrix composites as a new matrix. At the same time, the model enables the characterization of the hybrid effect at different temperatures effectively. In addition, good agreement between the two model predictions and available experimental values and finite element method results at different temperatures is achieved, verifying the rationality of the two models. Key influencing factors such as fiber geometry and matrix/short fiber Young’s modulus at different temperatures are analyzed in detail, and useful suggestions for improving the TDYM of composites are put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data. For the theoretical data that support the findings of this study are available from the corresponding author on reasonable request.]

References

  • Akbulut, H., Durman, M., Yilmaz, F.: High temperature Young’s modulus of alumina short fibre reinforced Al-Si MMCs produced by liquid infiltration. Mater. Sci. Technol. 14, 299–305 (1998)

    Article  Google Scholar 

  • Asano, K., Yoneda, H.: High temperature properties of AZ91D magnesium alloy composite reinforced with short alumina fiber and Mg2Si particle. Mater. Trans. 49, 1688–1693 (2008)

    Article  Google Scholar 

  • BERT, C.W., 1979. 34th SRI/RP Conf. 'Composite materials mechanics: prediction of properties of planar random fibre composites'. Society of Plastic Industry.

  • Carper, J.J.L.J., 1999. The CRC Handbook of Chemistry and Physics. 124.

  • Chin, W.K., Liu, H.T., Lee, Y.D.: Effects of fiber length and orientation distribution on the elastic-modulus of short fiber reinforced thermoplastics. Polym. Compos. 9, 27–35 (1988)

    Article  Google Scholar 

  • Committe, A.J.M.H., 1990. Properties and selection: nonferrous alloys and special-purpose materials. 2.

  • Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3, 72–79 (1952)

    Article  Google Scholar 

  • Dong, C.S., Ranaweera-Jayawardena, H.A., Davies, I.J.: Flexural properties of hybrid composites reinforced by S-2 glass and T700S carbon fibres. Compos. Part B Eng. 43, 573–581 (2012)

    Article  Google Scholar 

  • Fang, D.N., Li, W.G., Cheng, T.B., Qu, Z.L., Chen, Y.F., Wang, R.Z., Ai, S.G.: Review on mechanics of ultra-high-temperature materials. Acta Mech. Sin. 37, 1347–1370 (2021)

    Article  MathSciNet  Google Scholar 

  • Fu, S.Y., Lauke, B.: The elastic modulus of misaligned short-fiber-reinforced polymers. Compos. Sci. Technol. 58, 389–400 (1998)

    Article  Google Scholar 

  • Fu, S.Y., Lauke, B.: Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers. Compos. Sci. Technol. 56, 1179–1190 (1996)

    Article  Google Scholar 

  • Fu, S.Y., Xu, G.S., Mai, Y.W.: On the elastic modulus of hybrid particle/short-fiber/polymer composites. Compos. Part B-Eng. 33, 291–299 (2002)

    Article  Google Scholar 

  • Halpin, J.C.J.e.o.e.f.o.c.m., 1969. Effects of environmental factors on composite materials.

  • Hamdia, K.M., Rabczuk, T., 2018. Key parameters for fracture toughness of particle/polymer nanocomposites; sensitivity analysis via XFEM modeling approach, fracture, fatigue & wear.

  • Hohe, J., Fliegener, S., Findeisen, C., Reiser, J., Widak, V., Rieth, M.: Numerical exploration into the potential of tungsten reinforced CuCrZr matrix composites. J. Nucl. Mater. 470, 13–29 (2016)

    Article  Google Scholar 

  • Hsueh, C.H.: Young’s modulus of unidirectional discontinuous-fibre composites. Compos. Sci. Technol. 60, 2671–2680 (2000)

    Article  Google Scholar 

  • Huang, J., Li, W.G., He, Y., Li, Y., Zhang, X.Y., Yang, M.Q., Zheng, S.F., Ma, Y.L.: Temperature dependent ultimate tensile strength model for short fiber reinforced metal matrix composites. Compos. Struct. 267, 113890 (2021)

    Article  Google Scholar 

  • Ibrahim, I.A., Mohamed, F.A., Lavernia, E.J.: Particulate reinforced metal matrix composites–a review. J. Mater. Sci. 26, 1137–1156 (1991)

    Article  Google Scholar 

  • J.am.chem.soc, N.J.: David R. Lide(eds.) CRC Handbook of Chemistry and Physics (National Institute of Standards and Technology). 81st edn. vol. 122, pp. 12614–12614. CRC Press: Boca Raton, FL (2000). ISBN 0–8493–0481–4

  • Jayaraman, K., Kortschot, M.T.: Correction to the Fukuda-Kawata Young’s modulus theory and the Fukuda-Chou strength theory for short fibre-reinforced composite materials. J. Mater. Sci. 31, 2059–2064 (1996)

    Article  Google Scholar 

  • Jia, L., Chen, B., Li, S.F., Imai, H., Takahashi, M., Kondoh, K.: Stability of strengthening effect of in situ formed TiCp and TiBw on the elevated temperature strength of (TiCp+ TiBw)/Ti composites. J. Alloy. Compd. 614, 29–34 (2014)

    Article  Google Scholar 

  • Jia, L., Li, X., Kondoh, K., Chen, B., Li, S.F., Umeda, J., Lu, Z.L.: Hybrid effect of TiCp and TiBw co-strengthening Ti matrix composites prepared by spark plasma sintering and hot extrusion. Mater. Charact. 151, 6–14 (2019)

    Article  Google Scholar 

  • Jung, S.W., Kim, S.Y., Nam, H.W., Han, K.S.: Measurements of fiber orientation and elastic-modulus analysis in short-fiber-reinforced composites. Compos. Sci. Technol. 61, 107–116 (2001)

    Article  Google Scholar 

  • Jung, S.W., Lee, J.H., Nam, J.B., Nam, H.W., Han, K.S., 2000. Analysis of strengthening mechanism in hybrid short fiber/particle reinforced metal matrix composites, In: Hwang, W., Han, K.S. (eds.), Fracture and Strength of Solids, Pts 1 and 2, pp. 1297–1302

  • Kelly, A.: Strong Solids. Oxford University Press, Oxford (1973)

    Google Scholar 

  • Kurnaz, S.C., Durman, A.: Temperature dependence of Young’s Modulus of alumina short fiber reinforced Zn-Al MMCs produced by pressure die-casting. Zeitschrift Fur Metallkunde 93, 1252–1258 (2002)

    Article  Google Scholar 

  • Lasagni, F., Degischer, H.P.: Enhanced Young’s Modulus of Al-Si alloys and reinforced matrices by co-continuous structures. J. Compos. Mater. 44, 739–755 (2010)

    Article  Google Scholar 

  • Lee, D.J., Oh, H., Song, Y.S., Youn, J.R.: Analysis of effective elastic modulus for multiphased hybrid composites. Compos. Sci. Technol. 72, 278–283 (2012)

    Article  Google Scholar 

  • Li, M., Zinkle, S.J.: Physical and mechanical properties of copper and copper alloys. Compr. Nucl. Mater. 4, 667–690 (2012)

    Article  Google Scholar 

  • Li, W.G., Kou, H.B., Zhang, X.Y., Ma, J.Z., Li, Y., Geng, P.J., Wu, X.Z., Chen, L.M., Fang, D.N.: Temperature-dependent elastic modulus model for metallic bulk materials. Mech. Mater. 139, 103194 (2019)

    Article  Google Scholar 

  • Li, W.G., Yang, F., Fang, D.N.: The temperature-dependent fracture strength model for ultra-high temperature ceramics. Acta Mech. Sin. 26, 235–239 (2010)

    Article  MATH  Google Scholar 

  • Lv, S., Li, J.S., Li, S.F., Kang, N., Chen, B.: Room-/high-temperature mechanical properties of titanium matrix composites reinforced with discontinuous carbon fibers. Adv. Eng. Mater. 24, 2101026 (2022)

    Article  Google Scholar 

  • Mandal, D., Dutta, B.K., Panigrahi, S.C.: Influence of coating on short steel fiber reinforcements on corrosion behavior of aluminium base short steel fiber reinforced composites. J. Mater. Sci. 42, 2796–2801 (2007)

    Article  Google Scholar 

  • Mital, S.K., Murthy, P.L.N., Goldberg, R.K.: Micromechanics for particulate-reinforced composites. Mech. Compos. Mater. Struct. 4, 251–266 (1997)

    Article  Google Scholar 

  • Mlekusch, B., Lehner, E.A., Geymayer, W.: Fibre orientation in short-fibre-reinforced thermoplastics-I. Contrast enhancement for image analysis. Compos. Sci. Technol. 59, 543–545 (1999)

    Article  Google Scholar 

  • Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  • Mu, W.P., Lin, J.B., Gong, Y., Wu, D.X., Liu, E.Q.: Microstructure and mechanical properties of ni-coated continuous carbon fibers-reinforced pure aluminum matrix composites prepared by twin-roll casting method. Adv. Eng. Mater. 23, 2100420 (2021)

    Article  Google Scholar 

  • Peled, A., Mobasher, B., Sueki, S.: Mechanical properties of hybrid fabrics in pultruded composites, 16th European Conference of Fracture, pp 749 Alexandroupolis, Greece, (2006)

  • Shao, J.X., Li, W.G., Deng, Y., Ma, J.Z., Zhang, X.H., Geng, P.J., Kou, H.B., Chen, L.M., Wu, X.Z.: Theoretical models and influencing factor analysis for the temperature-dependent tensile strength of ceramic fibers and their unidirectional composites. Compos. Struct. 164, 23–31 (2017)

    Article  Google Scholar 

  • Sharma, M., Rao, I.M., Bijwe, J.: Influence of orientation of long fibers in carbon fiber-polyetherimide composites on mechanical and tribological properties. Wear 267, 839–845 (2009)

    Article  Google Scholar 

  • Sharma, M., Rao, I.M., Bijwe, J.: Influence of fiber orientation on abrasive wear of unidirectionally reinforced carbon fiber-polyetherimide composites. Tribol. Int. 43, 959–964 (2010)

    Article  Google Scholar 

  • Sharma, S.C.: Elastic properties of short glass fiber-reinforced ZA-27 alloy metal matrix composites. J. Mater. Eng. Perform. 10, 468–474 (2001)

    Article  Google Scholar 

  • Sirkis, J.S., Cheng, A., Dasgupta, A., Pandelidis, I.: Image-processing based method of predicting stiffness characteristics of short-fiber-reinforced injection-molded parts. J. Compos. Mater. 28, 784–799 (1994)

    Article  Google Scholar 

  • Steinberg, D.J., Cochran, S.G., Guinan, M.W.: A constitutive model for metals applicable at high-strain rate. J. Appl. Phys. 51, 1498–1504 (1980)

    Article  Google Scholar 

  • Tu, Z.Q., Nganbe, M.: Laminate squeeze casting and equibiaxial bend behavior of carbon fiber fabric reinforced aluminum matrix composites. Adv. Eng. Mater. 23, 2000657 (2021)

    Article  Google Scholar 

  • Ulrych, F., Sova, M., Vokrouhlecky, J., Turcic, B.: Empirical relations of the mechanical-properties of polyamide-6 reinforced with short glass-fibers. Polym. Compos. 14, 229–237 (1993)

    Article  Google Scholar 

  • Wang, H.W., Zhou, H.W., Gui, L.L., Ji, H.W., Zhang, X.C.: Analysis of effect of fiber orientation on Young’s modulus for unidirectional fiber reinforced composites. Compos. Part B Eng. 56, 733–739 (2014)

    Article  Google Scholar 

  • Wang, Z.G., Yuan, Y.: Micromechanics-based modeling of elastic modulus and coefficient of thermal expansion for CNT-metal nanocomposites: effects of waviness, clustering and aluminum carbide layer. Int. J. Mech. Mater. Des. 16, 783–799 (2020)

    Article  Google Scholar 

  • Wilson, D.M.: New High Temperature Oxide Fibers. New High Temperature Oxide Fibers. (2001)

  • Zapletal, J., Trojanova, Z., Dolezal, P., Fintova, S., Knapek, M.: Elastic and plastic behavior of the QE22 magnesium alloy reinforced with short saffil fibers and SiC particles. Metals 8, 133 (2018)

    Article  Google Scholar 

  • Zhang, X.Y., Li, W.G., Kou, H.B., Shao, J.X., Deng, Y., Ma, J.Z.: Modeling the temperature and porosity dependent Young’s modulus of porous ceramics. Mater. Res. Express 5, 015204 (2018)

    Article  Google Scholar 

  • Zhang, X.Y., Li, W.G., Zhao, Z.Y., He, Y., Dong, P., Ma, Y.L., Huang, J.: A theoretical model for the tensile modulus of polymer/CNT nanocomposites over a wide temperature range. Compos. Commun. 28, 100971 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [No. 11672050], the Fundamental Research Funds for the Central Universities [No. 2019CDQYHK016].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiguo Li or Zhiqing Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Li, W., Zhang, X. et al. Modeling the temperature-dependent Young’s modulus of short fiber reinforced metal matrix composites and its particle hybrid composites. Int J Mech Mater Des 18, 837–851 (2022). https://doi.org/10.1007/s10999-022-09611-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-022-09611-y

Keywords

Navigation