Skip to main content
Log in

Nonlinear dynamic and bifurcations analysis of an axially moving circular cylindrical nanocomposite shell

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The focus of the present paper is on investigating the nonlinear dynamics of the axially moving FG-CNTRC shells with different reinforcement distribution and the scale effects of CNTs in the subcritical regime of axial speed. The governing equations are derived in cylindrical coordinate utilizing the Hamilton principle by implementing the Donnell-Mushtari nonlinear shell theory and considering the mechanical properties of nanocomposite shells obtained from the extended rule of mixture. Two nonlinear coupled nonhomogeneous PDEs, a compatibility equation, and the motion equation in the radial direction are the result of applying in-plane airy stress function and continuity conditions on them. Then by substituting the flexural mode shape in the mentioned equations, the airy stress function is achieved. By the aid of Jordan conical form, the coupling of the second derivative of time in seven nonlinear nonhomogeneous ODEs resulted from applying the Galerkin method on the equilibrium equation in the radial direction is removed. Eventually, these ODEs are transformed into the Normal Form. The bifurcation analysis based on the frequency, the force, the damping ratio, and the velocity are carried out for circular cylindrical nanocomposite shells with four distribution types of SWCNT reinforcement and various volume fraction of CNTs. Four sorts of fixed points, including saddle nodes, pitchfork bifurcation, periodic doubling, and torus, have appeared in outlined parameters’ responses of nanocomposite circular cylindrical shells’ vibration. The Runge Kutta 4th order and pseudo arclength continuation as the numerical methods state the accuracy of the Normal Form Method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Shahgholi.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamadi, A., Shahgholi, M. & Ashenai Ghasemi, F. Nonlinear dynamic and bifurcations analysis of an axially moving circular cylindrical nanocomposite shell. Int J Mech Mater Des 18, 125–154 (2022). https://doi.org/10.1007/s10999-021-09571-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-021-09571-9

Keywords

Navigation