Skip to main content
Log in

Singular stress analysis of an anisotropic elastic medium containing polygonal holes using a novel hybrid finite element method

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

A novel hybrid finite element method based on a numerical procedure is proposed to compute singular field near V-shaped notch corners in an anisotropic material containing polygonal holes. The finite element method is established by the following three steps: (1) an ad hoc one-dimensional finite element formulation is employed to determined numerical eigensolutions of the singular field near an V-shaped notch corner; (2) a super corner tip element is constructed to determine the strength of the singular field, in which the independent assumed stress fields are extracted from the eigensolutions; (3) a novel hybrid finite element equation is obtained by coupling the super corner tip element with the conventional hybrid stress elements. In numerical examples, generalized stress intensity factors for interactions between two polygonal holes with various geometry, space position and material property are mainly discussed. All the numerical results show that present method yields satisfactory singular stress field solutions with fewer elements. Compared with the conventional finite element methods and integral equation methods, the present method is more suitable for dealing with micromechanics of anisotropic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Banks-Sills, L., Hershkovitz, I., Wawrzynek, P.A., Eliasi, R., Ingraffea, A.R.: Methods for calculating stress intensity factors in anisotropic materials. Part I. z = 0 is a symmetric plane. Eng. Fract. Mech. 72, 2328–2358 (2005)

    Article  Google Scholar 

  • Banks-Sills, L., Wawrzynek, P.A., Carter, B., Ingraffea, A.R., Hershkovitz, I.: Methods for calculating stress intensity factors in anisotropic materials. Part II. Arbitrary geometry. Eng. Fract. Mech. 74, 1293–1307 (2007)

    Article  Google Scholar 

  • Blanco, C., Martínez-esnaola, J.M., Atkinson, C.: Analysis of sharp angular notches in anisotropic materials. Int. J. Fract. 93, 373–386 (1998)

    Article  Google Scholar 

  • Bogy, D.B.: The plane solution for anisotropic elastic wedges under normal and shear loading. J. Appl. Mech. 39, 1103–1109 (1972)

    Article  MATH  Google Scholar 

  • Busch, M., Heinzelmann, M., Maschke, H.G.: A cohesive zone model for the failure assessment of V-notches in micromechanical components. Int. J. Fract. 69, R15–R21 (1994)

    Article  Google Scholar 

  • Chen, D.H.: Analysis of singular stress field around the inclusion corner tip. Eng. Fract. Mech. 49, 533–546 (1994)

    Article  Google Scholar 

  • Chen, M.C., Ping, X.C.: Finite element analysis of piezoelectric corner configurations and cracks accounting for different electric permeabilities. Eng. Fract. Mech. 74, 1151–1524 (2007a)

    Google Scholar 

  • Chen, M.C., Ping, X.C.: A novel hybrid element analysis for piezoelectric-parent material wedges. Comput. Mech. 40, 13–24 (2007b)

    Article  MATH  Google Scholar 

  • Chen, M.C., Ping, X.C.: Analysis of the interaction within a rectangular array of rectangular inclusions using a new hybrid finite element method. Eng. Fract. Mech. 76, 580–593 (2009a)

    Article  Google Scholar 

  • Chen, M.C., Ping, X.C.: A novel hybrid finite element analysis of inplane singular elastic field around inclusion corners in elastic media. Int. J. Solids Struct. 46, 2527–2538 (2009b)

    Article  MATH  Google Scholar 

  • Chen, M.C., Sze, K.Y., Wang, H.T.: Analysis of singular stresses in bonded material wedges by computed eigensolutions and hybrid element method. Commun. Num. Meth. Eng. 17, 495–507 (2001)

    Article  MATH  Google Scholar 

  • Delale, F.: Stress singularities in bonded anisotropic materials. Int. J. Solids Struct. 20(1), 31–40 (1984)

    Article  MATH  Google Scholar 

  • Delale, F., Erdogan, F.: The problem of internal and edge cracks in an orthotropic strip. J. Appl. Mech. Trans. ASME 44(2), 237–242 (1977)

    Article  MATH  Google Scholar 

  • Dong, C.Y., Lo, S.H., Cheung, Y.K.: Stress analysis of inclusion problems of various shapes in an infinite anisotropic elastic medium. Comput. Meth. Appl. Mech. Eng. 192, 683–696 (2003)

    Article  MATH  Google Scholar 

  • Hein, V.L., Erdogan, F.: Stress singularities in a two-material wedge. Int. J. Fract. Mech. 7, 317–330 (1971)

    Google Scholar 

  • Labossiere, P.E.W., Dunn, M.L.: Stress intensities at interface corners in anisotropic bimaterials. Eng. Fract. Mech. 62, 555–575 (1999)

    Article  Google Scholar 

  • Lee, J., Gao, H.: A hybrid finite element analysis of interface cracks. Int. J. Num. Meth. Eng. 38, 2465–2482 (1995)

    Article  MATH  Google Scholar 

  • Leguillon, D.: Computation of 3D-singularities in elasticity. In: Costabel, M., Dauge, M., Nicaise, S. (eds.) Boundary Value Problems and Integral Equations on Non-Smooth Domains. Lect. Notes in Pure and Applied Math., vol. 167, pp. 161–170. Marcel Dekker, New York (1995)

  • Leguillon, D., Sanchez-Palencia, E.: Computation of Singular Solutions in Elliptic Problems and Elasticity. Wiley, New York (1987)

    MATH  Google Scholar 

  • Li, B., Liu, Y.W., Fang, Q.H.: Uniformly moving screw dislocation interacting with interface cracks in anisotropic bimaterials. Int. J. Solids Struct. 44, 4206–4219 (2007)

    Article  MATH  Google Scholar 

  • Li, X., Wu, Y.J.: The numerical solutions of the periodic crack problems of anisotropic strips. Int. J. Fract. 118(1), 41–56 (2002)

    Article  Google Scholar 

  • Li, X.F.: Closed-form solution for two collinear mode-III cracks in an orthotropic elastic strip of finite width. Mech. Res. Commun. 30, 365–370 (2003)

    Article  MATH  Google Scholar 

  • Mahajan, R., Erdogan, F., Kilic, B., Madenci, E.: Cracking of an orthotropic substrate reinforced by an orthotropic plate. Int. J. Solids Struct. 40, 6389–6415 (2003)

    Article  MATH  Google Scholar 

  • Ma, C.C., Hour, B.I.: Analysis of dissimilar anisotropic wedges subjected to antiplane shear deformation. Int. J. Solids Struct. 11, 1295–1309 (1989)

    Google Scholar 

  • Meguid, S.A., Hu, G.D.: A new finite element for treating plane thermo-mechanical heterogeneous solids. Int. J. Num. Meth. Eng. 44, 567–585 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Noda, N.A., Oda, K., Inoue, T.: Analysis of newly-defined stress intensity factors for angular corners using singular integral equations of the body force method. Int. J. Fract. 76, 243–261 (1996)

    Article  Google Scholar 

  • Noda, N.A., Takase, Y., Chen, M.C.: Generalized stress intensity factors in the interaction between two fibres in matrix. Int. J. Fract. 103, 19–39 (2000)

    Article  Google Scholar 

  • Nomura, Y., Ikeda, T., Miyazaki, N.: Stress intensity factor analysis at an interfacial corner between anisotropic bimaterials under thermal stress. Eng. Fract. Mech. 76, 221–235 (2009)

    Article  Google Scholar 

  • Ozkan, U., Nied, H.F., Kaya, A.C.: Fracture analysis of anisotropic materials using enriched crack tip elements. Eng. Fract. Mech. 77, 1191–1202 (2010)

    Article  Google Scholar 

  • Pageau, S.S., Biggers Jr., S.B.: Enrichment of finite elements with numerical solutions for singular stress fields. Int. J. Num. Meth. Eng. 40, 2693–2713 (1997)

    Article  MATH  Google Scholar 

  • Pageau, S.S., Gadi, K.S., Biggers Jr., S.B., Joseph, P.F.: Standardized complex and logarithmic eigensolutions for n-material wedges and junctions. Int. J. Fract. 77(1), 51–76 (1996)

    Article  Google Scholar 

  • Pageau, S., Joseph, P.F., Biggers Jr., S.B.: Finite element analysis of anisotropic materials with singular inplane stress fields. Int. J. Solids Struct. 32(5), 571–591 (1995)

    Article  MATH  Google Scholar 

  • Peng, W.B., Sung, J.C.: Interactions of two arbitrarily oriented cracks in a homogeneous anisotropic medium. Appl. Math. Model. 27, 701–715 (2003)

    Article  MATH  Google Scholar 

  • Pian, T.H.H.: Derivation of element stiffness matrices by assumed stress distributions. AIAA J. 2, 1333–1336 (1964)

    Article  Google Scholar 

  • Pian, T.H.H., Sumihara, K.: Rational approach for assumed stress finite elements. Int. J. Num. Meth. Eng. 20, 1685–1695 (1984)

    Article  MATH  Google Scholar 

  • Ping, X.C., Chen, M.C.: Effective elastic properties of solids with irregularly shaped inclusions. Int. J. Mech. Mater. Des. 5, 231–242 (2009)

    Article  Google Scholar 

  • Ping, X.C., Chen, M.C., Xie, J.L.: Singular stress analyses of V-notched anisotropic plates based on a novel finite element method. Eng. Fract. Mech. 75, 3819–3838 (2008)

    Article  Google Scholar 

  • Shin, K.C., Kim, W.S., Lee, J.J.: Application of stress intensity to design of anisotropic/isotropic bi-materials with a wedge. Int. J. Solids Struct. 44, 7748–7766 (2007)

    Article  MATH  Google Scholar 

  • Somaratna, N., Ting, T.C.T.: Three dimensional stress singularities in anisotropic materials and composites. Int. J. Eng. Sci. 24, 1115–1134 (1986)

    Article  MATH  Google Scholar 

  • Song, C.M., Tin-Loi, F., Gao, W.: A definition and evaluation procedure of generalized stress intensity factors at cracks and multi-material wedges. Eng. Fract. Mech. 77, 2316–2336 (2010)

    Article  Google Scholar 

  • Song, C.M., Wolf, J.P.: Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method. Comput. Struct. 80, 183–197 (2002)

    Article  Google Scholar 

  • Su, R.K.L., Sun, H.Y.: Numerical solutions of two-dimensional anisotropic crack problems. Int. J. Solids Struct. 40, 4615–4635 (2003)

    Article  MATH  Google Scholar 

  • Sze, K.Y., Wang, H.T.: A simple finite element formulation for computing stress singularities at bimaterial interfaces. Finite Elem. Anal. Des. 35, 97–118 (2000)

    Article  MATH  Google Scholar 

  • Sze, K.Y., Wang, H.T., Fan, H.: A finite element approach for computing edge singularities in piezoelectric materials. Int. J. Solids Struct. 38, 9233–9252 (2001)

    Article  MATH  Google Scholar 

  • Tan, M.A., Meguid, S.A.: Analysis of bimaterial wedges using a new singular finite element. Int. J. Fract. 88, 373–391 (1997)

    Article  Google Scholar 

  • Tong, P.: A hybrid crack element for rectilinear anisotropic material. Int. J. Num. Meth. Eng. 11, 377–403 (1977)

    Article  MATH  Google Scholar 

  • Wang, X.W., Zhou, Y., Zhou, W.L.: A novel hybrid finite element with a hole for analysis of plane piezoelectric medium with defects. Int. J. Solids Struct. 41, 7111–7128 (2004)

    Article  MATH  Google Scholar 

  • Wu, Z.G., Liu, Y.H.: Asymptotic fields near an interface corner in orthotropic bi-materials. Int. J. Fract. 156, 37–51 (2009)

    Article  Google Scholar 

  • Wu, K.C., Chen, C.T.: Stress analysis of anisotropic elastic V-notched bodies. Int. J. Solids Struct. 33(17), 2403–2416 (1996)

    Article  MATH  Google Scholar 

  • Xu, J.J., Yuuki, R.: Stress intensity factors for interface crack between dissimilar orthotropic materials (The case where principal axes are not aligned with the interface). Trans. JSME A60(577), 1943–1950 (1994)

    Google Scholar 

  • Zhou, Z.G., Wang, B.: Investigation of the interaction of two collinear cracks in anisotropic elasticity materials by means of the nonlocal theory. Int. J. Eng. Sci. 43, 1107–1120 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of National Natural Science Foundation of China through Grant Nos. 10362002, 10662004 and 51065008, the Jiangxi Provincial Natural Science Foundation of China through Grant Nos. 2007GZW0862 and 2010GZW0013, and the Jinggang-Star training Plan for Young Scientists of Jiangxi Province through Grant No. 20112BCB23013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Cheng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ping, XC., Chen, MC., Leng, L. et al. Singular stress analysis of an anisotropic elastic medium containing polygonal holes using a novel hybrid finite element method. Int J Mech Mater Des 8, 219–236 (2012). https://doi.org/10.1007/s10999-012-9187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-012-9187-5

Keywords

Navigation