Skip to main content

Advertisement

Log in

Effects of C-Terminal-Ethyl-Esterification in a Snake-Venom-Based Peptide Against the Neurotoxicity of Acrolein in PC12 Cells

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

We have recently reported the neurotrophic and neuroprotective effects of the snake-venom-based synthetic tripeptide BTX-I in PC12 cells treated with acrolein. In the present study, this peptide was chemically modified to increase its neurotrophic/neuroprotective activity. Esterification (ethyl or methyl), PEGylation and amidation were introduced at the C-terminus; acetylation was introduced at the N-terminus. The modified peptides protected PC12 cells from the decrease in viability and neuritogenesis induced by acrolein; however, only the ethyl-esterified peptide (named BTX-II) significantly increased neuritogenesis in comparison with the original peptide BTX-I. Moreover, BTX-II increased the expression of proteins related to (i) axonal/synaptic plasticity (synapsin I, β-III-Tubulin), and (ii) energy metabolism (AMPK-α and SIRT I) in PC12 cells treated with acrolein. In addition, BTX-II upregulated the expression of genes that encode apolipoprotein E (ApoE) and Mitogen-Activated Protein Kinase 3 (Mapk3), which are associated with cognitive improvements in animal models of Alzheimer’s disease (AD). In conclusion, ethyl-esterification at the C-terminus of the snake-venom-based tripeptide [Glu-Val-Trp] improved the neurotrophic and neuroprotective potential in relation to the original tripeptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdul Muneer PM, Alikunju S, Szlachetka AM, Mercer AJ, Haorah J (2011) Ethanol impairs glucose uptake by human astrocytes and neurons: protective effects of acetyl-l-carnitine. Int J Physiol Pathophysiol Pharmacol 3:48–56

    CAS  PubMed  Google Scholar 

  • Abusnina A, Lugnier C (2017) Therapeutic potentials of natural compounds acting on cyclic nucleotide phosphodiesterase families. Cell Signal 39:55–65

    Article  CAS  PubMed  Google Scholar 

  • Adade CM, Carvalho AL, Tomaz MA, Costa TF, Godinho JL, Melo PA, Lima AP, Rodrigues JC, Zingali RB, Souto-Padron T (2014) Crovirin, a snake venom cysteine-rich secretory protein (CRISP) with promising activity against Trypanosomes and Leishmania. PLoS Negl Trop Dis 8:e3252

    Article  PubMed  PubMed Central  Google Scholar 

  • Albani D, Polito L, Batelli S, de Mauro S, Fracasso C, Martelli G, Colombo L, Manzoni C, Salmona M, Caccia S, Negro A, Forloni G (2009) The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1–42) peptide. J Neurochem 110:1445–1456

    Article  CAS  PubMed  Google Scholar 

  • Ang E-T, Tai A, Lo S-Q, Seet R, Soong TW (2010) Neurodegenerative diseases: exercising towards neurogenesis and neuroregeneration. Front Aging Neurosci 2:25

    PubMed  PubMed Central  Google Scholar 

  • Ansari MA, Roberts KN, Scheff SW (2008) Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radic Biol Med 45:443–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baig MH, Ahmad K, Saeed M, Alharbi AM, Barreto G, Ashraf G, Choi I (2018) Peptide based therapeutics and their use for the treatment of neurodegenerative and other diseases. Biomed Pharmacother 103:574–581

    Article  CAS  PubMed  Google Scholar 

  • Bakail M, Ochsenbein F (2016) Targeting protein–protein interactions, a wide open field for drug design. C R Chim 19:19–27

    Article  CAS  Google Scholar 

  • Ballatore C, Lee VMY, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8:663

    Article  CAS  PubMed  Google Scholar 

  • Bernardes CP, Santos NAG, Sisti FM, Ferreira RS, Santos-Filho NA, Cintra ACO, Cilli EM, Sampaio SV, Santos AC (2018) A synthetic snake-venom-based tripeptide (Glu-Val-Trp) protects PC12 cells from MPP(+) toxicity by activating the NGF-signaling pathway. Peptides 104:24–34

    Article  CAS  PubMed  Google Scholar 

  • Bernardes CP, Santos NAG, Costa TR, Sisti F, Amaral L, Menaldo DL, Amstalden MK, Ribeiro DL, Antunes LMG, Sampaio SV, Santos AC (2020) A Synthetic snake-venom-based tripeptide protects PC12 cells from the neurotoxicity of acrolein by improving axonal plasticity and bioenergetics. Neurotox Res 37:227–237

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Castegna A, Lauderback CM, Drake J (2002) Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 23:655–664

    Article  PubMed  Google Scholar 

  • Calingasan NY, Uchida K, Gibson GE (1999) Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J Neurochem 72:751–756

    Article  CAS  PubMed  Google Scholar 

  • Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 14:450–464

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Lu J, Peng W, Mak MSH, Yang Y, Zhu Z, Wang S, Hou J, Zhou X, Xin W, Hu Y, Tsim KWK, Han Y, Liu Q, Pi R (2022) Acrolein, an endogenous aldehyde induces Alzheimer’s disease-like pathologies in mice: a new sporadic AD animal model. Pharmacol Res 175:106003

    Article  CAS  PubMed  Google Scholar 

  • Clare R, King VG, Wirenfeldt M, Vinters HV (2010) Synapse loss in dementias. J Neurosci Res 88:2083–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa TR, Amstalden MK, Ribeiro DL, Menaldo DL, Sartim MA, Aissa AF, Antunes LMG, Sampaio SV (2018) CR-LAAO causes genotoxic damage in HepG2 tumor cells by oxidative stress. Toxicology 404–405:42–48

    Article  PubMed  Google Scholar 

  • Cramer PE, Cirrito JR, Wesson DW, Lee CY, Karlo JC, Zinn AE, Casali BT, Restivo JL, Goebel WD, James MJ, Brunden KR, Wilson DA, Landreth GE (2012) ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science 335:1503–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das KP, Freudenrich TM, Mundy WR (2004) Assessment of PC12 cell differentiation and neurite growth: a comparison of morphological and neurochemical measures. Neurotoxicol Teratol 26:397–406

    Article  CAS  PubMed  Google Scholar 

  • Diao L, Meibohm B (2013) Pharmacokinetics and pharmacokinetic–pharmacodynamic correlations of therapeutic peptides. Clin Pharmacokinet 52:855–868

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Rodriguez V, Ganusova E, Rappe TM, Becker JM, Distefano MD (2015) Synthesis of peptides containing C-terminal esters using trityl side-chain anchoring: applications to the synthesis of C-terminal ester analogs of the Saccharomyces cerevisiae mating pheromone a-factor. J Org Chem 80:11266–11274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doggui S, Belkacemi A, Paka GD, Perrotte M, Pi R, Ramassamy C (2013) Curcumin protects neuronal-like cells against acrolein by restoring Akt and redox signaling pathways. Mol Nutr Food Res 57:1660–1670

    Article  CAS  PubMed  Google Scholar 

  • Donmez G, Wang D, Cohen DE, Guarente L (2010) SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 142:320–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  CAS  PubMed  Google Scholar 

  • Federico A, Cardaioli E, da Pozzo P, Formichi P, Gallus GN, Radi E (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 322:254–262

    Article  CAS  PubMed  Google Scholar 

  • Franco R, Martinez-Pinilla E, Navarro G, Zamarbide M (2017) Potential of GPCRs to modulate MAPK and mTOR pathways in Alzheimer’s disease. Prog Neurobiol 149–150:21–38

    Article  PubMed  Google Scholar 

  • Fujita Y, Yamashita T (2018) Sirtuins in neuroendocrine regulation and neurological diseases. Front Neurosci 12:778

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujiyama A, Tsunasawa S, Tamanoi F, Sakiyama F (1991) S-farnesylation and methyl esterification of C-terminal domain of yeast RAS2 protein prior to fatty acid acylation. J Biol Chem 266:17926–17931

    Article  CAS  PubMed  Google Scholar 

  • Georgieva D, Arni RK, Betzel C (2008) Proteome analysis of snake venom toxins: pharmacological insights. Expert Rev Proteom 5:787–797

    Article  CAS  Google Scholar 

  • Gitler D, Xu Y, Kao H-T, Lin D, Lim S, Feng J, Greengard P, Augustine GJ (2004) Molecular determinants of synapsin targeting to presynaptic terminals. J Neurosci 24:3711–3720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goedert M, Jakes R (1990) Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J 9:4225–4230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Ramos A, Díaz-Nido J, Smith MA, Perry G, Avila J (2003) Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells. J Neurosci Res 71:863–870

    Article  PubMed  Google Scholar 

  • Greco SJ, Sarkar S, Johnston JM, Tezapsidis N (2009) Leptin regulates tau phosphorylation and amyloid through AMPK in neuronal cells. Biochem Biophys Res Commun 380:98–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregoriadis G, Jain S, Papaioannou I, Laing P (2005) Improving the therapeutic efficacy of peptides and proteins: a role for polysialic acids. Int J Pharm 300:125–130

    Article  CAS  PubMed  Google Scholar 

  • Griffin EF, Scopel SE, Stephen CA, Holzhauer AC, Vaji MA, Tuckey RA, Berkowitz LA, Caldwell KA, Caldwell GA (2019) ApoE-associated modulation of neuroprotection from Abeta-mediated neurodegeneration in transgenic Caenorhabditis elegans. Dis Model Mech 12:dmm037218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamann K, Shi R (2009) Acrolein scavenging: a potential novel mechanism of attenuating oxidative stress following spinal cord injury. J Neurochem 111:1348–1356

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG (2011) AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes Dev 25:1895–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie DG, Scott JW, Pan DA, Hudson ER (2003) Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett 546:113–120

    Article  CAS  PubMed  Google Scholar 

  • Hilfiker S, Pieribone VA, Czernik AJ, Kao HT, Augustine GJ, Greengard P (1999) Synapsins as regulators of neurotransmitter release. Philos Trans R Soc Lond Ser B Biol Sci 354:269–279

    Article  CAS  Google Scholar 

  • Huang K-F, Hung C-C, Wu S-H, Chiou S-H (1998) Characterization of three endogenous peptide inhibitors for multiple metalloproteinases with fibrinogenolytic activity from the venom of Taiwan habu (Trimeresurus mucrosquamatus). Biochem Biophys Res Commun 248:562–568

    Article  CAS  PubMed  Google Scholar 

  • Huebbe P, Rimbach G (2017) Evolution of human apolipoprotein E (APOE) isoforms: gene structure, protein function and interaction with dietary factors. Ageing Res Rev 37:146–161

    Article  CAS  PubMed  Google Scholar 

  • Hussain R, Zubair H, Pursell S, Shahab M (2018) Neurodegenerative diseases: regenerative mechanisms and novel therapeutic approaches. Brain Sci 8:177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaworski J, Kapitein LC, Gouveia SM, Dortland BR, Wulf PS, Grigoriev I, Camera P, Spangler SA, di Stefano P, Demmers J, Krugers H, Defilippi P, Akhmanova A, Hoogenraad CC (2009) Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 61:85–100

    Article  CAS  PubMed  Google Scholar 

  • Kapitein LC, Hoogenraad CC (2015) Building the neuronal microtubule cytoskeleton. Neuron 87:492–506

    Article  CAS  PubMed  Google Scholar 

  • Kazim SF, Iqbal K (2016) Neurotrophic factor small-molecule mimetics mediated neuroregeneration and synaptic repair: emerging therapeutic modality for Alzheimer’s disease. Mol Neurodegener 11:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Ke R, Xu Q, Li C, Luo L, Huang D (2018) Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int 42:384–392

    Article  CAS  PubMed  Google Scholar 

  • Kloog Y, Ambar I, Sokolovsky M, Kochva E, Wollberg Z, Bdolah A (1988) Sarafotoxin, a novel vasoconstrictor peptide: phosphoinositide hydrolysis in rat heart and brain. Science 242:268–270

    Article  CAS  PubMed  Google Scholar 

  • Koffie RM, Hyman BT, Spires-Jones TL (2011) Alzheimer’s disease: synapses gone cold. Mol Neurodegener 6:63–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong Y, Wang Y, Yang W, Xie Z, Li Z (2015) LX0702, a novel snake venom peptide derivative, inhibits thrombus formation via affecting the binding of fibrinogen with GPIIb/IIIa. J Pharmacol Sci 127:462–466

    Article  CAS  PubMed  Google Scholar 

  • L’Episcopo F, Serapide MF, Tirolo C, Testa N, Caniglia S, Morale MC, Pluchino S, Marchetti B (2011) A Wnt1 regulated Frizzled-1/beta-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: therapeutical relevance for neuron survival and neuroprotection. Mol Neurodegener 6:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai H-C, Wu M-J, Chen P-Y, Sheu T-T, Chiu S-P, Lin M-H, Ho C-T, Yen J-H (2011) Neurotrophic effect of citrus 5-hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone: promotion of neurite outgrowth via cAMP/PKA/CREB pathway in PC12 cells. PLoS One 6:e28280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasser M, Tiber J, Lowery LA (2018) The Role of the microtubule cytoskeleton in neurodevelopmental disorders. Front Cell Neurosci 12:165–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Lau JL, Dunn MK (2018) Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 26:2700–2707

    Article  CAS  PubMed  Google Scholar 

  • Lewis RJ, Garcia ML (2003) Therapeutic potential of venom peptides. Nat Rev Drug Discov 2:790–802

    Article  CAS  PubMed  Google Scholar 

  • Li L, Yang XJ (2015) Tubulin acetylation: responsible enzymes, biological functions and human diseases. Cell Mol Life Sci 72:4237–4255

    Article  CAS  PubMed  Google Scholar 

  • Li J, Mottamal M, Li H, Liu K, Zhu F, Cho YY, Sosa CP, Zhou K, Bowden GT, Bode AM, Dong Z (2012) Quercetin-3-methyl ether suppresses proliferation of mouse epidermal JB6 P+ cells by targeting ERKs. Carcinogenesis 33:459–465

    Article  PubMed  Google Scholar 

  • Liao F, Yoon H, Kim J (2017) Apolipoprotein E metabolism and functions in brain and its role in Alzheimer’s disease. Curr Opin Lipidol 28:60–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopachin RM, Gavin T, Petersen DR, Barber DS (2009) Molecular mechanisms of 4-hydroxy-2-nonenal and acrolein toxicity: nucleophilic targets and adduct formation. Chem Res Toxicol 22:1499–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovell MA, Xie C, Markesbery WR (2000) Acrolein, a product of lipid peroxidation, inhibits glucose and glutamate uptake in primary neuronal cultures. Free Radic Biol Med 29:714–720

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Robinson JP, Shi R (2005) Acrolein-induced cell death in PC12 cells: role of mitochondria-mediated oxidative stress. Neurochem Int 47:449–457

    Article  CAS  PubMed  Google Scholar 

  • Mahoney-Sanchez L, Belaidi AA, Bush AI, Ayton S (2016) The complex role of apolipoprotein E in Alzheimer’s disease: an overview and update. J Mol Neurosci 60:325–335

    Article  CAS  PubMed  Google Scholar 

  • Manzanares P, Martínez R, Garrigues S, Genovés S, Ramón D, Marcos FJ, Martorell P (2018) Tryptophan-containing dual neuroprotective peptides: prolyl endopeptidase inhibition and Caenorhabditis elegans protection from β-amyloid peptide toxicity. Int J Mol Sci 19:1491

    Article  PubMed  PubMed Central  Google Scholar 

  • Marsh J, Alifragis P (2018) Synaptic dysfunction in Alzheimer’s disease: the effects of amyloid beta on synaptic vesicle dynamics as a novel target for therapeutic intervention. Neural Regen Res 13:616–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins NM, Santos NA, Sartim MA, Cintra AC, Sampaio SV, Santos AC (2015) A tripeptide isolated from Bothrops atrox venom has neuroprotective and neurotrophic effects on a cellular model of Parkinson’s disease. Chem Biol Interact 235:10–16

    Article  CAS  PubMed  Google Scholar 

  • Masliah E, Mallory M, Veinbergs I, Miller A, Samuel W (1996) Alterations in apolipoprotein E expression during aging and neurodegeneration. Prog Neurobiol 50:493–503

    Article  CAS  PubMed  Google Scholar 

  • Mccain J (2013) The MAPK (ERK) pathway: investigational combinations for the treatment of BRAF-mutated metastatic melanoma. P & T 38:96–108

    Google Scholar 

  • Mecocci P, Polidori MC (2012) Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. Biochim Biophys Acta (BBA) Mol Basis Dis 1822:631–638

    Article  CAS  Google Scholar 

  • Melli G, Taiana M, Camozzi F, Triolo D, Podini P, Quattrini A, Taroni F, Lauria G (2008) Alpha-lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy. Exp Neurol 214:276–284

    Article  CAS  PubMed  Google Scholar 

  • Menaldo DL, Bernardes CP, Zoccal KF, Jacob-Ferreira AL, Costa TR, del Lama MP, Naal RM, Frantz FG, Faccioli LH, Sampaio SV (2017) Immune cells and mediators involved in the inflammatory responses induced by a P-I metalloprotease and a phospholipase A2 from Bothrops atrox venom. Mol Immunol 85:238–247

    Article  CAS  PubMed  Google Scholar 

  • Michan S, Li Y, Chou MM, Parrella E, Ge H, Long JM, Allard JS, Lewis K, Miller M, Xu W, Mervis RF, Chen J, Guerin KI, Smith LE, McBurney MW, Sinclair DA, Baudry M, de Cabo R, Longo VD (2010) SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci 30:9695–9707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moghe A, Ghare S, Lamoreau B, Mohammad M, Barve S, McClain C, Joshi-Barve S (2015) Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicol Sci 143:242–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molchanova N, Hansen PR, Franzyk H (2017) Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules 22:1430

    Article  PubMed  PubMed Central  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Munawar A, Ali SA, Akrem A, Betzel C (2018) Snake venom peptides: tools of biodiscovery. Toxins 10:474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neefjes J, Ovaa H (2013) A peptide’s perspective on antigen presentation to the immune system. Nat Chem Biol 9:769

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Araki M, Miyamae T, Okayama T, Hagiwara M, Sakurada S, Morikawa T (2003) Synthesis and antinociceptive activity of orally active opioid peptides: improvement of oral bioavailability by esterification. Chem Pharm Bull 51:759–771

    Article  CAS  Google Scholar 

  • Oyarzabal A, Marin-Valencia I (2019) Synaptic energy metabolism and neuronal excitability, in sickness and health. J Inherit Metab Dis 42:220–236

    Article  PubMed  Google Scholar 

  • Pacheco A, Gallo G (2016) Actin filament-microtubule interactions in axon initiation and branching. Brain Res Bull 126:300–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SJ, Ahmad F, Um JH, Brown AL, Xu X, Kang H, Ke H, Feng X, Ryall J, Philp A, Schenk S, Kim MK, Sartorelli V, Chung JH (2017) Specific SIRT1 activator-mediated improvement in glucose homeostasis requires SIRT1-independent activation of AMPK. EBioMedicine 18:128–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel B, Das S, Prakash R, Yasir M (2010) Natural bioactive compound with anticancer potential

  • Paulson JB, Ramsden M, Forster C, Sherman MA, McGowan E, Ashe KH (2008) Amyloid plaque and neurofibrillary tangle pathology in a regulatable mouse model of Alzheimer’s disease. Am J Pathol 173:762–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng S, Zhang Y, Zhang J, Wang H, Ren B (2010) ERK in learning and memory: a review of recent research. Int J Mol Sci 11:222–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennington MW, Czerwinski A, Norton RS (2018) Peptide therapeutics from venom: current status and potential. Bioorg Med Chem 26:2738–2758

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36–e36

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips MC (2014) Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life 66:616–623

    Article  CAS  PubMed  Google Scholar 

  • Pontiroli AE (1998) Peptide hormones: review of current and emerging uses by nasal delivery. Adv Drug Deliv Rev 29:81–87

    Article  CAS  PubMed  Google Scholar 

  • Prasasty V, Radifar M, Istyastono E (2018) Natural peptides in drug discovery targeting acetylcholinesterase. Molecules (basel, Switzerland) 23:2344

    Article  PubMed  Google Scholar 

  • Prinholato da Silva C, Costa TR, Paiva RM, Cintra AC, Menaldo DL, Antunes LM, Sampaio SV (2015) Antitumor potential of the myotoxin BthTX-I from Bothrops jararacussu snake venom: evaluation of cell cycle alterations and death mechanisms induced in tumor cell lines. J Venom Anim Toxins Incl Trop Dis 21:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, Zhao W, Thiyagarajan M, Macgrogan D, Rodgers JT, Puigserver P, Sadoshima J, Deng H, Pedrini S, Gandy S, Sauve AA, Pasinetti GM (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281:21745–21754

    Article  CAS  PubMed  Google Scholar 

  • Räder AFB, Reichart F, Weinmüller M, Kessler H (2018) Improving oral bioavailability of cyclic peptides by N-methylation. Bioorg Med Chem 26:2766–2773

    Article  PubMed  Google Scholar 

  • Ramírez G, Alvarez A, Garcia-Abreu J, Gomes FCA, Moura-Neto V, Maccioni RB (1999) Regulatory roles of microtubule-associated proteins in neuronal morphogenesis. Involvement of the extracellular matrix. Braz J Med Biol Res 32:611–618

    Article  PubMed  Google Scholar 

  • Rasband WS (1997–2014) ImageJ, U.S. National Institutes of Health, Bethesda. http://imagej.nih.gov/ij/

  • Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, Lan F, Ido Y (2010) AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab 298:E751–E760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sainath R, Gallo G (2015) Cytoskeletal and signaling mechanisms of neurite formation. Cell Tissue Res 359:267–278

    Article  CAS  PubMed  Google Scholar 

  • Sala A, Cabassi CS, Santospirito D, Polverini E, Flisi S, Cavirani S, Taddei S (2018) Novel Naja atra cardiotoxin 1 (CTX-1) derived antimicrobial peptides with broad spectrum activity. PLoS One 13:e0190778

    Article  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  CAS  PubMed  Google Scholar 

  • Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1:a006189–a006189

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Ye B, Chen P, Wang Q, Fan C, Shu Y, Xiang M (2018) Cognitive decline, dementia, Alzheimer’s disease and presbycusis: examination of the possible molecular mechanism. Front Neurosci 12:394

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh M, Dang TN, Arseneault M, Ramassamy C (2010) Role of by-products of lipid oxidation in Alzheimer’s disease brain: a focus on acrolein. J Alzheimers Dis 21:741–756

    Article  CAS  PubMed  Google Scholar 

  • Smalheiser NR, Dissanayake S, Kapil A (1996) Rapid regulation of neurite outgrowth and retraction by phospholipase A2-derived arachidonic acid and its metabolites. Brain Res 721:39–48

    Article  CAS  PubMed  Google Scholar 

  • Sultana R, Perluigi M, Butterfield DA (2013) Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med 62:157–169

    Article  CAS  PubMed  Google Scholar 

  • Tramutola A, Lanzillotta C, Perluigi M, Butterfield DA (2017) Oxidative stress, protein modification and Alzheimer disease. Brain Res Bull 133:88–96

    Article  CAS  PubMed  Google Scholar 

  • Verberne AJ, Sabetghadam A, Korim WS (2014) Neural pathways that control the glucose counterregulatory response. Front Neurosci 8:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Waldhoer M, Bartlett SE, Whistler JL (2004) Opioid receptors. Annu Rev Biochem 73:953–990

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang W, Li L, Perry G, Lee H-G, Zhu X (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta (BBA) Mol Basis Dis 1842:1240–1247

    Article  CAS  Google Scholar 

  • Won J-S, Im Y-B, Kim J, Singh AK, Singh I (2010) Involvement of AMP-activated-protein-kinase (AMPK) in neuronal amyloidogenesis. Biochem Biophys Res Commun 399:487–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong J, Fang W, Fang W, Bai L, Huo J, Kong Y, Yunman L (2009) Anticoagulant and antithrombotic activity of a new peptide pENW (pGlu-Asn-Trp). J Pharm Pharmacol 61:89–94

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki Y, Painter MM, Bu G, Kanekiyo T (2016) Apolipoprotein E as a therapeutic target in Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs 30:773–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao J, Brinton RD (2011) Targeting mitochondrial bioenergetics for Alzheimer’s prevention and treatment. Curr Pharm Des 17:3474–3479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao ZX, Han Z, Drieu K, Papadopoulos V (2004) Ginkgo biloba extract (Egb 761) inhibits beta-amyloid production by lowering free cholesterol levels. J Nutr Biochem 15:749–756

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Lu J, Wang S, Peng W, Yang Y, Chen C, Zhou X, Yang X (2022) Acrolein, an endogenous aldehyde induces synaptic dysfunction in vitro and in vivo: involvement of RhoA/ROCK2 pathway. Aging Cell 21:e13587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant numbers: 2015/4808-2, 2011/23236-4), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Grant number: 305823/2019-1) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equally contributed to this study.

Corresponding author

Correspondence to Antonio C. Santos.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardes, C.P., Santos, N.A.G., Costa, T.R. et al. Effects of C-Terminal-Ethyl-Esterification in a Snake-Venom-Based Peptide Against the Neurotoxicity of Acrolein in PC12 Cells. Int J Pept Res Ther 29, 41 (2023). https://doi.org/10.1007/s10989-023-10517-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10989-023-10517-2

Keywords

Navigation