Skip to main content

Advertisement

Log in

Head and Neck Squamous Cell Carcinoma: Risk Factors, Molecular Alterations, Immunology and Peptide Vaccines

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Head and neck squamous cell carcinoma (HNSCC) arises from the epithelial lining of the oral cavity, hypopharynx, oropharynx, and larynx. There are several potential risk factors that cause the generation of HNSCC, including cigarette smoking, alcohol consumption, betel quid chewing, inadequate nutrition, poor oral hygiene, HPV and Epstein–Barr virus, and Candida albicans infections. HNSCC has causative links to both environmental factors and genetic mutations, with the latter playing a more critical role in cancer progression. These molecular changes to epithelial cells include the inactivation of cancer suppressor genes and proto-oncogenes overexpression, resulting in tumour cell proliferation and distant metastasis. HNSCC patients have impaired dendritic cell (DC) and natural killer (NK) cell functions, increased production of higher immune-suppressive molecules, loss of regulatory T cells and co-stimulatory molecules and major histocompatibility complex (MHC) class Ι molecules, lower number of lymphocyte subsets, and a poor response to antigen-presenting cells. At present, the standard treatment modalities for HNSCC patients include surgery, chemotherapy and radiotherapy, and combinatorial therapy. Despite advances in the development of novel treatment modalities over the last few decades, survival rates of HNSCC patients have not increased. To establish effective immunotherapies, a greater understanding of interactions between the immune system and HNSCC is required, and there is a particular need to develop novel therapeutic options. A therapeutic cancer vaccine has been proposed as a promising method to improve outcome by inducing a powerful adaptive immune response that leads to cancer cell elimination. Compared with other vaccines, peptide cancer vaccines are more robust and specific. In the past few years, there have been remarkable achievements in peptide-based vaccines for HNSCC patients. Here, we summarize the latest molecular alterations in HNSCC, explore the immune response to HNSCC, and discuss the latest developments in peptide-based cancer vaccine strategies. This review highlights areas for valuable future research focusing on peptide-based cancer vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Acin S et al (2011) Gain-of-function mutant p53 but not p53 deletion promotes head and neck cancer progression in response to oncogenic K-ras. J Pathol 225(4):479–489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aggarwal C et al (2019) Immunotherapy targeting HPV16/18 generates potent immune responses in HPV-associated head and neck cancer. Clin Cancer Res 25(1):110–124

    CAS  PubMed  Google Scholar 

  • Albers AE et al (2018) Phenotype of p53 wild-type epitope-specific T cells in the circulation of patients with head and neck cancer. Sci Rep 8(1):10716

    PubMed  PubMed Central  Google Scholar 

  • Almand B et al (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6(5):1755–1766

    CAS  PubMed  Google Scholar 

  • Almand B et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166(1):678–689

    CAS  PubMed  Google Scholar 

  • Alnuaimi AD et al (2015) Oral Candida colonization in oral cancer patients and its relationship with traditional risk factors of oral cancer: a matched case–control study. Oral Oncol 51(2):139–145

    PubMed  Google Scholar 

  • Alsahafi E et al (2019) Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death Dis 10(8):540

    PubMed  PubMed Central  Google Scholar 

  • Alshadwi A et al (2013) Nutritional considerations for head and neck cancer patients: a review of the literature. J Oral Maxillofac Surg 71(11):1853–1860

    PubMed  Google Scholar 

  • Altieri DC (2003) Validating survivin as a cancer therapeutic target. Nat Rev Cancer 3(1):46–54

    CAS  PubMed  Google Scholar 

  • Amit M et al (2020) Loss of p53 drives neuron reprogramming in head and neck cancer. Nature 578(7795):449–454

    CAS  PubMed  Google Scholar 

  • Amtha R et al (2014) Tobacco (kretek) smoking, betel quid chewing and risk of oral cancer in a selected Jakarta population. Asian Pac J Cancer Prev 15(20):8673–8678

    PubMed  Google Scholar 

  • Argiris A et al (2008) Head and neck cancer. Lancet (lond Engl) 371(9625):1695–1709

    CAS  Google Scholar 

  • Bandoh N et al (2010) HLA class I antigen and transporter associated with antigen processing downregulation in metastatic lesions of head and neck squamous cell carcinoma as a marker of poor prognosis. Oncol Rep 23(4):933–939

    CAS  PubMed  Google Scholar 

  • Baruah P et al (2012) Decreased levels of alternative co-stimulatory receptors OX40 and 4–1BB characterise T cells from head and neck cancer patients. Immunobiology 217(7):669–675

    CAS  PubMed  Google Scholar 

  • Bessell A et al (2011) Interventions for the treatment of oral and oropharyngeal cancers: surgical treatment. Cochrane Database Syst Rev 9:CD006205

    Google Scholar 

  • Bezu L et al (2018) Trial watch: peptide-based vaccines in anticancer therapy. OncoImmunology 7(12):e1511506

    PubMed  PubMed Central  Google Scholar 

  • Bonner JA et al (2010) Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol 11(1):21–28

    CAS  PubMed  Google Scholar 

  • Bu LL et al (2017) STAT3 induces immunosuppression by upregulating PD-1/PD-L1 in HNSCC. J Dent Res 96(9):1027–1034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai C et al (2014) Keratinizing-type squamous cell carcinoma of the oropharynx: p16 overexpression is associated with positive high-risk HPV status and improved survival. Am J Surg Pathol 38(6):809–815

    PubMed  Google Scholar 

  • Calixto G et al (2014) Nanotechnology-based drug delivery systems for treatment of oral cancer: a review. Int J Nanomed 9:3719–3735

    CAS  Google Scholar 

  • Calvo Tardón M et al (2019) Peptides as cancer vaccines. Curr Opin Pharmacol 47:20–26

    PubMed  Google Scholar 

  • Camacho M et al (2008) Prostaglandin E(2) pathway in head and neck squamous cell carcinoma. Head Neck 30(9):1175–1181

    PubMed  Google Scholar 

  • Canning M et al (2019) Heterogeneity of the head and neck squamous cell carcinoma immune landscape and its impact on immunotherapy. Front Cell Dev Biol 7:52

    PubMed  PubMed Central  Google Scholar 

  • Celenk F et al (2013) Expression of cyclooxygenase-2, 12-lipoxygenase, and inducible nitric oxide synthase in head and neck squamous cell carcinoma. J Craniofac Surg 24(4):1114–1117

    PubMed  Google Scholar 

  • Chai SJ et al (2019) In vitro evaluation of dual-antigenic PV1 peptide vaccine in head and neck cancer patients. Hum Vaccines Immunother 15(1):167–178

    Google Scholar 

  • Chang JS et al (2013) Investigating the association between oral hygiene and head and neck cancer. Oral Oncol 49(10):1010–1017

    PubMed  Google Scholar 

  • Chen X et al (2020) Personalized neoantigen vaccination with synthetic long peptides: recent advances and future perspectives. Theranostics 10(13):6011–6023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CH, Chen RJ (2011) Prevalence of telomerase activity in human cancer. J Formos Med Assoc 110(5):275–289

    CAS  PubMed  Google Scholar 

  • Clement-Colmou K et al (2015) Clinical and paraclinical follow-up after radiotherapy for head and neck cancer. Cancer Radiother 19(6–7):597–602

    CAS  PubMed  Google Scholar 

  • Constantinidou A, Alifieris C, Trafalis DT (2019) Targeting Programmed Cell Death-1 (PD-1) and Ligand (PD-L1): a new era in cancer active immunotherapy. Pharmacol Ther 194:84–106

    CAS  PubMed  Google Scholar 

  • Costa NL et al (2013) Tumor-associated macrophages and the profile of inflammatory cytokines in oral squamous cell carcinoma. Oral Oncol 49(3):216–223

    CAS  PubMed  Google Scholar 

  • Costache MI et al (2015) VEGF expression in pancreatic cancer and other malignancies: a review of the literature. Rom J Intern Med 53(3):199–208

    CAS  PubMed  Google Scholar 

  • D’Souza G et al (2007) Case–control study of human papillomavirus and oropharyngeal cancer. N Engl J Med 356(19):1944–1956

    CAS  PubMed  Google Scholar 

  • Daigo K et al (2018) Characterization of KIF11 as a novel prognostic biomarker and therapeutic target for oral cancer. Int J Oncol 52(1):155–165

    CAS  PubMed  Google Scholar 

  • Dasgupta S et al (2005) Inhibition of NK cell activity through TGF-beta 1 by down-regulation of NKG2D in a murine model of head and neck cancer. J Immunol 175(8):5541–5550

    CAS  PubMed  Google Scholar 

  • Domingos-Pereira S et al (2019) Carboplatin/paclitaxel, E7-vaccination and intravaginal CpG as tri-therapy towards efficient regression of genital HPV16 tumors. J Immunother Cancer 7(1):122

    PubMed  PubMed Central  Google Scholar 

  • Domingos-Pereira S et al (2021) Vaccination with a nanoparticle E7 vaccine can prevent tumor recurrence following surgery in a human papillomavirus head and neck cancer model. OncoImmunology 10(1):1912473

    PubMed  PubMed Central  Google Scholar 

  • Dorta-Estremera S et al (2018) Mucosal HPV E6/E7 peptide vaccination in combination with immune checkpoint modulation induces regression of HPV+ oral cancers. Cancer Res 78(18):5327–5339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dreno B et al (2018) MAGE-A3 immunotherapeutic as adjuvant therapy for patients with resected, MAGE-A3-positive, stage III melanoma (DERMA): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 19(7):916–929

    CAS  PubMed  Google Scholar 

  • Eisbruch A et al (2002) Objective assessment of swallowing dysfunction and aspiration after radiation concurrent with chemotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 53(1):23–28

    PubMed  Google Scholar 

  • Elango KJ et al (2011) Role of human papilloma virus in oral tongue squamous cell carcinoma. Asian Pac J Cancer Prev 12(4):889–896

    PubMed  Google Scholar 

  • Elkord E et al (2010) T regulatory cells in cancer: recent advances and therapeutic potential. Expert Opin Biol Ther 10(11):1573–1586

    CAS  PubMed  Google Scholar 

  • Estêvão D et al (2019) Hallmarks of HPV carcinogenesis: the role of E6, E7 and E5 oncoproteins in cellular malignancy. Biochim Biophys Acta Gene Regul Mech 1862(2):153–162

    PubMed  Google Scholar 

  • Eun-Young LEE, Ji-Yeon K, Kyoung-Won KIM (2015) Expression of cyclooxygenase-2, peroxiredoxin I, peroxiredoxin 6 and nuclear factor-κB in oral squamous cell carcinoma. Oncol Lett 10(5):3129–3136

    Google Scholar 

  • Fakhry C, D’Souza G (2013) Discussing the diagnosis of HPV-OSCC: common questions and answers. Oral Oncol 49(9):863–871

    PubMed  PubMed Central  Google Scholar 

  • Ferlay J et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 5:359

    Google Scholar 

  • Ferris RL (2015) Immunology and immunotherapy of head and neck cancer. J Clin Oncol 33(29):3293–3304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris RL, Whiteside TL, Ferrone S (2006) Immune escape associated with functional defects in antigen-processing machinery in head and neck cancer. Clin Cancer Res 12(13):3890–3895

    CAS  PubMed  Google Scholar 

  • Freiser ME, Serafini P, Weed DT (2013) The immune system and head and neck squamous cell carcinoma: from carcinogenesis to new therapeutic opportunities. Immunol Res 57(1–3):52–69

    CAS  PubMed  Google Scholar 

  • Fries CN et al (2021) Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nat Nanotechnol 16(4):1–14

    CAS  PubMed  Google Scholar 

  • Furness S et al (2011) Interventions for the treatment of oral cavity and oropharyngeal cancer: chemotherapy. Cochrane Database Syst Rev 4:CD006386

    Google Scholar 

  • Gabrilovich D et al (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92(11):4150–4166

    CAS  PubMed  Google Scholar 

  • Gaglione R et al (2019) Cost-effective production of recombinant peptides in Escherichia coli. N Biotechnol 51:39–48

    CAS  PubMed  Google Scholar 

  • Gasparoto TH et al (2010) Patients with oral squamous cell carcinoma are characterized by increased frequency of suppressive regulatory T cells in the blood and tumor microenvironment. Cancer Immunol Immunother 59(6):819–828

    CAS  PubMed  Google Scholar 

  • Gilbert MR, Lim C-M, Kim S (2013) Head and neck cancer. In: Experimental metastasis: modeling and analysis. Springer, Berlin, p 7–26

  • Gouttefangeas C, Rammensee H-G (2018) Personalized cancer vaccines: adjuvants are important, too. Cancer Immunol Immunother 67(12):1911–1918

    CAS  PubMed  Google Scholar 

  • Gregoire V, Langendijk JA, Nuyts S (2015) Advances in radiotherapy for head and neck cancer. J Clin Oncol 33(29):3277–3284

    CAS  PubMed  Google Scholar 

  • Groux H, Fournier N, Cottrez F (2004) Role of dendritic cells in the generation of regulatory T cells. Semin Immunol 16(2):99–106

    CAS  PubMed  Google Scholar 

  • Guerra A et al (2021) Simulation of the process of angiogenesis: quantification and assessment of vascular patterning in the chicken chorioallantoic membrane. Comput Biol Med 136:104647

    CAS  PubMed  Google Scholar 

  • Guha N et al (2014) Betel quid chewing and the risk of oral and oropharyngeal cancers: a meta-analysis with implications for cancer control. Int J Cancer 135(6):1433–1443

    CAS  PubMed  Google Scholar 

  • Güneri P, Epstein JB (2014) Late stage diagnosis of oral cancer: components and possible solutions. Oral Oncol 50(12):1131–1136

    PubMed  Google Scholar 

  • Haddad R et al (2013) Induction chemotherapy followed by concurrent chemoradiotherapy (sequential chemoradiotherapy) versus concurrent chemoradiotherapy alone in locally advanced head and neck cancer (PARADIGM): a randomised phase 3 trial. Lancet Oncol 14(3):257–264

    CAS  PubMed  Google Scholar 

  • Hanken H et al (2014) CCND1 amplification and cyclin D1 immunohistochemical expression in head and neck squamous cell carcinomas. Clin Oral Investig 18(1):269–276

    PubMed  Google Scholar 

  • Hayashi R et al (2021) Expression of placenta-specific 1 and its potential for eliciting anti-tumor helper T-cell responses in head and neck squamous cell carcinoma. OncoImmunology 10(1):1856545

    Google Scholar 

  • Hettmann A et al (2015) Infectious agents associated with head and neck carcinomas. Adv Exp Med Biol 897:63–80

    Google Scholar 

  • Hickey MJ, Valenzuela NM, Reed EF (2016) Alloantibody generation and effector function following sensitization to human leukocyte antigen. Front Immunol 7:30

    PubMed  PubMed Central  Google Scholar 

  • Hsu HW et al (2014) Combination antiangiogenic therapy and radiation in head and neck cancers. Oral Oncol 50(1):19–26

    CAS  PubMed  Google Scholar 

  • Hu J, Ge W, Xu J (2016) HPV 16 E7 inhibits OSCC cell proliferation, invasion, and metastasis by upregulating the expression of miR-20a. Tumor Biol 37(7):9433–9440

    CAS  Google Scholar 

  • Huang B et al (2006) Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66(2):1123–1131

    CAS  PubMed  Google Scholar 

  • Huang C et al (2021) Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell 39(3):361-379.e16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbers CU, Akgul B (2015) HPV and cancer of the oral cavity. Virulence 6(3):244–248

    PubMed  PubMed Central  Google Scholar 

  • Hwang T-Z et al (2015) Incidence trends of human papillomavirus-related head and neck cancer in Taiwan, 1995–2009. Int J Cancer 137(2):395–408

    CAS  PubMed  Google Scholar 

  • Isidro-Llobet A et al (2019) Sustainability challenges in peptide synthesis and purification: from R&D to production. J Org Chem 84(8):4615–4628

    CAS  PubMed  Google Scholar 

  • Jinno T et al (2015) Increased expression of interleukin-6 predicts poor response to chemoradiotherapy and unfavorable prognosis in oral squamous cell carcinoma. Oncol Rep 5:2161

    Google Scholar 

  • Johnson BF et al (2007) Vascular endothelial growth factor and immunosuppression in cancer: current knowledge and potential for new therapy. Expert Opin Biol Ther 7(4):449–460

    CAS  PubMed  Google Scholar 

  • Johnson DE et al (2020) Head and neck squamous cell carcinoma. Nat Rev Dis Primers 6(1):92–92

    PubMed  PubMed Central  Google Scholar 

  • Ju X et al (2020) Regulation of PD-L1 expression in cancer and clinical implications in immunotherapy. Am J Cancer Res 10(1):1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kademani D (2007) Oral cancer. Mayo Clin Proc 82(7):878–887

    PubMed  Google Scholar 

  • Kaminagakura E et al (2012) High-risk human papillomavirus in oral squamous cell carcinoma of young patients. Int J Cancer 130(8):1726–1732

    CAS  PubMed  Google Scholar 

  • Kao SY, Lim E (2015) An overview of detection and screening of oral cancer in Taiwan. Chin J Dent Res 18(1):7–12

    PubMed  Google Scholar 

  • Karatzanis AD et al (2012) Molecular pathways of lymphangiogenesis and lymph node metastasis in head and neck cancer. Eur Arch Oto-Rhino-Laryngol off J Eur Fed Oto-Rhino-Laryngol Soc Affil Ger Soc Oto-Rhino-Laryngol Head Neck Surg 269(3):731–737

    CAS  Google Scholar 

  • Karavasili C et al (2019) Synergistic antitumor potency of a self-assembling peptide hydrogel for the local co-delivery of doxorubicin and curcumin in the treatment of head and neck cancer. Mol Pharm 16(6):2326–2341

    CAS  PubMed  Google Scholar 

  • Keir ME et al (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    CAS  PubMed  Google Scholar 

  • Klein HL (2008) The consequences of Rad51 overexpression for normal and tumor cells. DNA Repair (amst) 7(5):686–693

    CAS  Google Scholar 

  • Krishnamachari Y et al (2011) Nanoparticle delivery systems in cancer vaccines. Pharm Res 28(2):215–236

    CAS  PubMed  Google Scholar 

  • Kuss I et al (2004) Decreased absolute counts of T lymphocyte subsets and their relation to disease in squamous cell carcinoma of the head and neck. Clin Cancer Res 10(11):3755–3762

    CAS  PubMed  Google Scholar 

  • Kwong FN, Puvanendran M, Paleri V (2015) Transoral robotic surgery in head neck cancer management. B-ENT Suppl 24:7–13

    CAS  PubMed  Google Scholar 

  • van der Laan HP et al (2013) The potential of intensity-modulated proton radiotherapy to reduce swallowing dysfunction in the treatment of head and neck cancer: a planning comparative study. Acta Oncol 52(3):561–569

    PubMed  Google Scholar 

  • Lebman DA, Edmiston JS (1999) The role of TGF-β in growth, differentiation, and maturation of B lymphocytes. Microbes Infect 1(15):1297–1304

    CAS  PubMed  Google Scholar 

  • Lee DW et al (2002) Increased cyclooxygenase-2 expression in human squamous cell carcinomas of the head and neck and inhibition of proliferation by nonsteroidal anti-inflammatory drugs. Anticancer Res 22(4):2089–2096

    CAS  PubMed  Google Scholar 

  • Lee Y-CA et al (2019) Tobacco smoking, alcohol drinking, betel quid chewing, and the risk of head and neck cancer in an East Asian population. Head Neck 41(1):92–102

    PubMed  Google Scholar 

  • Leroux-Roels G (2010) Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine 28:C25–C36

    PubMed  Google Scholar 

  • Li W et al (2017) C-terminal modification and multimerization increase the efficacy of a proline-rich antimicrobial peptide. Chem Eur J 23(2):390–396

    CAS  PubMed  Google Scholar 

  • Li W et al (2017) The effect of selective D- or Nα-methyl arginine substitution on the activity of the proline-rich antimicrobial peptide, Chex1-Arg20. Front Chem. https://doi.org/10.3389/fchem.2017.00001

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W et al (2020) Chemical modification of cellulose membranes for SPOT synthesis. Aust J Chem 73(3):78–84

    CAS  Google Scholar 

  • Li M et al (2021a) Structurally related peptide impurity identification and accurate quantification for synthetic oxytocin by liquid chromatography–high-resolution mass spectrometry. Anal Bioanal Chem 413(7):1861–1870

    CAS  PubMed  Google Scholar 

  • Li W et al (2021b) Chemically modified and conjugated antimicrobial peptides against superbugs. Chem Soc Rev 50(8):4932–4973

    CAS  PubMed  Google Scholar 

  • Lim KP et al (2014) Identification of immunogenic MAGED4B peptides for vaccine development in oral cancer immunotherapy. Hum Vaccine Immunother 10(11):3214–3223

    Google Scholar 

  • Lippitz BE (2013) Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol 14(6):e218–e228

    CAS  PubMed  Google Scholar 

  • Liu TY et al (2012) Advances in peptide-based human papillomavirus therapeutic vaccines. Curr Top Med Chem 12(14):1581–1592

    CAS  PubMed  Google Scholar 

  • Liu D et al (2012) Association between polymorphisms in the promoter regions of matrix metalloproteinases (MMPs) and risk of cancer metastasis: a meta-analysis. PLoS ONE 7(2):e31251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Muzio L et al (2003) Survivin expression in oral squamous cell carcinoma. Br J Cancer 89(12):2244–2248

    CAS  PubMed  Google Scholar 

  • Lyford-Pike S et al (2013) Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res 73(6):1733–1741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Machiels JP, Schmitz S (2015) Epidermal growth factor receptor inhibition in squamous cell carcinoma of the head and neck. Hematol Oncol Clin N Am 29(6):1011–1032

    Google Scholar 

  • Mali SB (2015) Review of STAT3 (Signal Transducers and Activators of Transcription) in head and neck cancer. Oral Oncol 51(6):565–569

    CAS  PubMed  Google Scholar 

  • Malonis RJ, Lai JR, Vergnolle O (2020) Peptide-based vaccines: current progress and future challenges. Chem Rev 120(6):3210–3229

    CAS  PubMed  Google Scholar 

  • Mao L, Hong WK, Papadimitrakopoulou VA (2004) Focus on head and neck cancer. Cancer Cell 5(4):311–316

    CAS  PubMed  Google Scholar 

  • Marta GN et al (2014) Intensity-modulated radiation therapy for head and neck cancer: systematic review and meta-analysis. Radiother Oncol 110(1):9–15

    PubMed  Google Scholar 

  • Marur S et al (2010) HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol 11(8):781–789

    PubMed  PubMed Central  Google Scholar 

  • Masuda M et al (2002) Constitutive activation of signal transducers and activators of transcription 3 correlates with cyclin D1 overexpression and may provide a novel prognostic marker in head and neck squamous cell carcinoma. Cancer Res 62(12):3351–3355

    CAS  PubMed  Google Scholar 

  • McQueen N et al (2016) Smoking cessation and electronic cigarette use among head and neck cancer patients. Otolaryngol Head Neck Surg 154(1):73–79

    PubMed  Google Scholar 

  • Mehanna H et al (2010) Head and neck cancer—Part 1: epidemiology, presentation, and prevention. BMJ 341:c4684

    CAS  PubMed  Google Scholar 

  • Mehanna H et al (2013) Prevalence of human papillomavirus in oropharyngeal and nonoropharyngeal head and neck cancer—systematic review and meta-analysis of trends by time and region. Head Neck 35(5):747–755

    PubMed  Google Scholar 

  • Meulemans J, Delaere P, Vander Poorten V (2015) Early experience in transoral robotic surgery (TORS) for non-oropharyngeal head and neck malignancies: a review of functional and oncologic outcomes. B-ENT Suppl 24:21–31

    CAS  PubMed  Google Scholar 

  • Miyamoto R et al (2003) Prognostic significance of cyclin D1 amplification and overexpression in oral squamous cell carcinomas. Oral Oncol 39:610–618

    CAS  PubMed  Google Scholar 

  • Miyazaki A et al (2011) Phase I clinical trial of survivin-derived peptide vaccine therapy for patients with advanced or recurrent oral cancer. Cancer Sci 102(2):324–329

    CAS  PubMed  Google Scholar 

  • van Monsjou HS et al (2010) Oropharyngeal squamous cell carcinoma: a unique disease on the rise? Oral Oncol 46(11):780–785

    PubMed  Google Scholar 

  • Mora Roman JJ et al (2019) Immunotherapeutic potential of mollusk hemocyanins in combination with human vaccine adjuvants in murine models of oral cancer. J Immunol Res 2019:7076942

    PubMed  PubMed Central  Google Scholar 

  • Morita Y et al (2012) Cyclooxygenase-2 promotes tumor lymphangiogenesis and lymph node metastasis in oral squamous cell carcinoma. Int J Oncol 41(3):885–892

    CAS  PubMed  Google Scholar 

  • Moutsopoulos NM, Wen J, Wahl SM (2008) TGF-β and tumors—an ill-fated alliance. Curr Opin Immunol 20(2):234–240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munshi T, Heckman CJ, Darlow S (2015) Association between tobacco waterpipe smoking and head and neck conditions: a systematic review. J Am Dent Assoc 146(10):760–766

    PubMed  Google Scholar 

  • Münger K, Howley PM (2002) Human papillomavirus immortalization and transformation functions. Virus Res 89(2):213–228

    PubMed  Google Scholar 

  • Nasman A et al (2015) Incidence of human papillomavirus positive tonsillar and base of tongue carcinoma: a stabilisation of an epidemic of viral induced carcinoma? Eur J Cancer 51(1):55–61

    PubMed  Google Scholar 

  • Noorlag R et al (2015) The diagnostic value of 11q13 amplification and protein expression in the detection of nodal metastasis from oral squamous cell carcinoma: a systematic review and meta-analysis. Virchows Arch 466(4):363–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogasawara M et al (2019) Phase I/II pilot study of Wilms’ tumor 1 peptide-pulsed dendritic cell vaccination combined with conventional chemotherapy in patients with head and neck cancer. Ther Apher Dial 23(3):279–288

    CAS  PubMed  Google Scholar 

  • Ohara K et al (2018) Targeting phosphorylated p53 to elicit tumor-reactive T helper responses against head and neck squamous cell carcinoma. OncoImmunology 7(9):e1466771

    PubMed  PubMed Central  Google Scholar 

  • Omar E (2015) Current concepts and future of noninvasive procedures for diagnosing oral squamous cell carcinoma—a systematic review. Head Face Med 11:6

    PubMed  PubMed Central  Google Scholar 

  • Park S-J et al (2004) IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. J Immunol (baltim MD 1950) 173(6):3844–3854

    CAS  Google Scholar 

  • Park JW et al (2014) Human papillomavirus type 16 E7 oncoprotein causes a delay in repair of DNA damage. Radiother Oncol 113(3):337–344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel SB, McCormack C, Hodge JC (2020) Non-fusion mutations in endometrial stromal sarcomas: what is the potential impact on tumourigenesis through cell cycle dysregulation? J Clin Pathol 73(12):830–835

    PubMed  Google Scholar 

  • Patel SG, Shah JP (2005) TNM staging of cancers of the head and neck: striving for uniformity among diversity. CA Cancer J Clin 55(4):242–258

    PubMed  Google Scholar 

  • Pavia M et al (2006) Association between fruit and vegetable consumption and oral cancer: a meta-analysis of observational studies. Am J Clin Nutr 83(5):1126–1134

    CAS  PubMed  Google Scholar 

  • Perri F et al (2015a) Radioresistance in head and neck squamous cell carcinoma: biological bases and therapeutic implications. Head Neck 5:763

    Google Scholar 

  • Perri F et al (2015b) Radioresistance in head and neck squamous cell carcinoma: biological bases and therapeutic implications. Head Neck 37(5):763–770

    PubMed  Google Scholar 

  • Pignon J-P et al (2009) Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol 92(1):4–14

    PubMed  Google Scholar 

  • Pignon JP, le Maitre A, Bourhis J (2007) Meta-Analyses of Chemotherapy in Head and Neck Cancer (MACH-NC): an update. Int J Radiat Oncol Biol Phys 69(2 Suppl):S112–S114

    PubMed  Google Scholar 

  • Poomsawat S et al (2016) Expression of cdk6 in head and neck squamous cell carcinoma. Clin Oral Investig 20(1):57–63

    PubMed  Google Scholar 

  • Purcell AW, McCluskey J, Rossjohn J (2007) More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov 6(5):404–414

    CAS  PubMed  Google Scholar 

  • Qiao X-W et al (2020) The evolving landscape of PD-1/PD-L1 pathway in head and neck cancer. Front Immunol 11:1721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinowits G, Haddad RI (2012) Overcoming resistance to EGFR inhibitor in head and neck cancer: a review of the literature. Oral Oncol 48(11):1085–1089

    CAS  PubMed  Google Scholar 

  • Reuschenbach M et al (2013) Lack of evidence of human papillomavirus-induced squamous cell carcinomas of the oral cavity in southern Germany. Oral Oncol 49(9):937–942

    CAS  PubMed  Google Scholar 

  • Reuschenbach M (2015) Targeting p16(INK4a) by therapeutic vaccination: concept and status of clinical investigations in HPV-associated head and neck cancers. HNO 63(2):104–110

    CAS  PubMed  Google Scholar 

  • Reuschenbach M et al (2016) A phase 1/2a study to test the safety and immunogenicity of a p16 peptide vaccine in patients with advanced human papillomavirus-associated cancers. Cancer 122(9):1425–1433

    CAS  PubMed  Google Scholar 

  • Rietbergen MM et al (2013) Increasing prevalence rates of HPV attributable oropharyngeal squamous cell carcinomas in the Netherlands as assessed by a validated test algorithm. Int J Cancer 132(7):1565–1571

    CAS  PubMed  Google Scholar 

  • Rivera C (2015) Essentials of oral cancer. Int J Clin Exp Pathol 8(9):11884–11894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigo JP et al (2014) Time trends in the prevalence of HPV in oropharyngeal squamous cell carcinomas in northern Spain (1990–2009). Int J Cancer 134(2):487–492

    PubMed  Google Scholar 

  • Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348(6230):62–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rushatamukayanunt P et al (2014) Lack of association between high-risk human papillomaviruses and oral squamous cell carcinoma in young Japanese patients. Asian Pac J Cancer Prev 15(10):4135–4141

    PubMed  Google Scholar 

  • Rutkowski T (2014) The role of tumor volume in radiotherapy of patients with head and neck cancer. Radiat Oncol 9(1):1–16

    Google Scholar 

  • Ruttkay-Nedecky B et al (2013) Relevance of infection with human papillomavirus: the role of the p53 tumor suppressor protein and E6/E7 zinc finger proteins (Review). Int J Oncol 43(6):1754–1762

    CAS  PubMed  Google Scholar 

  • Schaefer C et al (2005) Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br J Cancer 92(5):913–920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlom J (2012) Therapeutic cancer vaccines: current status and moving forward. J Natl Cancer Inst 104(8):599–613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider K et al (2018) Therapeutic human papillomavirus vaccines in head and neck cancer: a systematic review of current clinical trials. Vaccine 36(45):6594–6605

    CAS  PubMed  Google Scholar 

  • Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331(6024):1565–1570

    CAS  PubMed  Google Scholar 

  • van der Schroeff MP, Baatenburg de Jong RJ (2009) Staging and prognosis in head and neck cancer. Oral Oncol 45(4–5):356–360

    PubMed  Google Scholar 

  • Schuler PJ et al (2014) Phase I dendritic cell p53 peptide vaccine for head and neck cancer. Clin Cancer Res 20(9):2433–2444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schutt CA et al (2017) The cancer-testis antigen, sperm protein 17, a new biomarker and immunological target in head and neck squamous cell carcinoma. Oncotarget 8(59):100280–100287

    PubMed  PubMed Central  Google Scholar 

  • Shao Y et al (2013) miR-145 inhibits oral squamous cell carcinoma (OSCC) cell growth by targeting c-Myc and Cdk6. Cancer Cell Int 13(1):51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata H et al (2021) Personalized cancer vaccination in head and neck cancer. Cancer Sci 112(3):978–988

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL et al (2021) Cancer statistics, 2021. CA Cancer J Clin 71(1):7–33

    PubMed  Google Scholar 

  • Simard EP, Torre LA, Jemal A (2014) International trends in head and neck cancer incidence rates: differences by country, sex and anatomic site. Oral Oncol 50(5):387–403

    PubMed  Google Scholar 

  • Sittichai K (2013) The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J Cancer 1:66

    Google Scholar 

  • Skwarczynski M, Toth I (2014) Recent advances in peptide-based subunit nanovaccines. Nanomedicine (LOnd) 9(17):2657–2669

    CAS  Google Scholar 

  • Skwarczynski M, Toth I (2016) Peptide-based synthetic vaccines. Chem Sci 7(2):842–854

    CAS  PubMed  Google Scholar 

  • Skwarczynski M, Toth I (2016) ChemInform abstract: peptide-based synthetic vaccines. ChemInform. https://doi.org/10.1002/chin.201612281

    Article  Google Scholar 

  • Slingluff CL Jr (2011) The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination? Cancer J 17(5):343–350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens AJ, Burgess-Brown NA, Jiang S (2021) Beyond just peptide antigens: the complex world of peptide-based cancer vaccines. Front Immunol 12:696791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stransky N et al (2011) The mutational landscape of head and neck squamous cell carcinoma. Science 333(6046):1157–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss L et al (2007) A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clin Cancer Res 13(15 Pt 1):4345–4354

    CAS  PubMed  Google Scholar 

  • Sturgis EM, Cinciripini PM (2007) Trends in head and neck cancer incidence in relation to smoking prevalence: an emerging epidemic of human papillomavirus-associated cancers? Cancer 110(7):1429–1435

    PubMed  Google Scholar 

  • Sung H et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    PubMed  Google Scholar 

  • Swiecicki PL, Malloy KM, Worden FP (2016) Advanced oropharyngeal squamous cell carcinoma: pathogenesis, treatment, and novel therapeutic approaches. World J Clin Oncol 7(1):15–26

    PubMed  PubMed Central  Google Scholar 

  • Syrjanen S (2005) Human papillomavirus (HPV) in head and neck cancer. J Clin Virol 32(Suppl 1):S59-66

    PubMed  Google Scholar 

  • Takahashi H et al (2014) Telomerase-specific oncolytic adenovirus: antitumor effects on radiation-resistant head and neck squamous cell carcinoma cells. Head Neck 36(3):411–418

    PubMed  Google Scholar 

  • Takahashi H et al (2015) Immunosuppressive activity of cancer-associated fibroblasts in head and neck squamous cell carcinoma. Cancer Immunol Immunother 64(11):1407–1417

    CAS  PubMed  Google Scholar 

  • Takenaka S, Sato S (2015) Telomerase as biomarker for oral cancer. In: Biomarkers in cancer. Springer, Dordrecht, p 753. ISBN 978-94-007-7680-7

  • Tan YS et al (2018) Mitigating SOX2-potentiated immune escape of head and neck squamous cell carcinoma with a STING-inducing nanosatellite vaccine. Clin Cancer Res 24(17):4242–4255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas J, Primeaux T (2012) Is p16 immunohistochemistry a more cost-effective method for identification of human papilloma virus-associated head and neck squamous cell carcinoma? Ann Diagn Pathol 16(2):91–99

    PubMed  Google Scholar 

  • Tinhofer I, Braunholz D, Klinghammer K (2020) Preclinical models of head and neck squamous cell carcinoma for a basic understanding of cancer biology and its translation into efficient therapies. Cancers Head Neck 5(1):9

    PubMed  PubMed Central  Google Scholar 

  • Toes RE et al (1996) Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proc Natl Acad Sci USA 93(15):7855–7860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turksma AW et al (2013) Immunotherapy for head and neck cancer patients: shifting the balance. Immunotherapy 5(1):49–61

    CAS  PubMed  Google Scholar 

  • Tuttle TR et al (2016) The cyclic GMP/protein kinase G pathway as a therapeutic target in head and neck squamous cell carcinoma. Cancer Lett 2:279

    Google Scholar 

  • Vangara BS, Grandis JR (2014) Jak/STAT signaling in HNC. In: Molecular determinants of head and neck cancer. p. 163. https://doi.org/10.1007/978-1-4614-8815-6_8

  • Vansteenkiste JF et al (2016) Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 17(6):822–835

    CAS  PubMed  Google Scholar 

  • Vassilakopoulou M, Psyrri A, Argiris A (2015) Targeting angiogenesis in head and neck cancer. Oral Oncol 51(5):409–415

    CAS  PubMed  Google Scholar 

  • Vigneswaran N, Williams MD (2014) Epidemiologic trends in head and neck cancer and aids in diagnosis. Oral Maxillofac Sur Clin N Am 26:123–141

    Google Scholar 

  • Vilen ST et al (2013) Fluctuating roles of matrix metalloproteinase-9 in oral squamous cell carcinoma. Sci World J 2013:920595

    Google Scholar 

  • Vishak S, Rangarajan B, Kekatpure VD (2015) Neoadjuvant chemotherapy in oral cancers: Selecting the right patients. Indian J Med Paediatr Oncol 36(3):148–153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voskens CJ et al (2012) Induction of MAGE-A3 and HPV-16 immunity by Trojan vaccines in patients with head and neck carcinoma. Head Neck 34(12):1734–1746

    PubMed  PubMed Central  Google Scholar 

  • Wang M et al (2015b) Cancer-associated fibroblasts in a human HEp-2 established laryngeal xenografted tumor are not derived from cancer cells through epithelial–mesenchymal transition, phenotypically activated but karyotypically normal. PLoS ONE 10(2):e0117405

    PubMed  PubMed Central  Google Scholar 

  • Wang WM et al (2015a) Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1alpha and Notch1 in head neck squamous cell carcinoma. PLoS ONE 10(2):e0119723

    PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2020) Dendritic cell biology and its role in tumor immunotherapy. J Hematol Oncol 13(1):107

    PubMed  PubMed Central  Google Scholar 

  • Wang XJ, Feng CW, Li M (2013) ADAM17 mediates hypoxia-induced drug resistance in hepatocellular carcinoma cells through activation of EGFR/PI3K/Akt pathway. Mol Cell Biochem 380(1–2):57–66

    CAS  PubMed  Google Scholar 

  • Wanning S, Süverkrüp R, Lamprecht A (2020) Impact of excipient choice on the aerodynamic performance of inhalable spray-freeze-dried powders. Int J Pharm 586:119564

    CAS  PubMed  Google Scholar 

  • Warnakulasuriya S (2009) Global epidemiology of oral and oropharyngeal cancer. Oral Oncol 45(4–5):309–316

    PubMed  Google Scholar 

  • Wculek SK et al (2020) Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol 20(1):7–24

    CAS  PubMed  Google Scholar 

  • Weber F et al (2005) Transforming growth factor-beta1 immobilises dendritic cells within skin tumours and facilitates tumour escape from the immune system. Cancer Immunol Immunother 54(9):898–906

    CAS  PubMed  Google Scholar 

  • Whang SN, Filippova M, Duerksen-Hughes P (2015) Recent progress in therapeutic treatments and screening strategies for the prevention and treatment of HPV-associated head and neck cancer. Viruses 7(9):5040–5065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whiteside TL (2004) Down-regulation of ζ-chain expression in T cells: a biomarker of prognosis in cancer? Cancer Immunol Immunother 53(10):865–878

    CAS  PubMed  Google Scholar 

  • Whiteside TL (2005) Immunobiology of head and neck cancer. Cancer Metastasis Rev 24(1):95–105

    CAS  PubMed  Google Scholar 

  • Whiteside TL (2014) Regulatory T cell subsets in human cancer: are they regulating for or against tumor progression? Cancer Immunol Immunother 63(1):67–72

    CAS  PubMed  Google Scholar 

  • Wierzbicka M et al (2014) HPV vaccination in head and neck HPV-related pathologies. Otolaryngol Pol 68(4):157–173

    PubMed  Google Scholar 

  • Yang MC et al (2016) Buccal injection of synthetic HPV long peptide vaccine induces local and systemic antigen-specific CD8+ T-cell immune responses and antitumor effects without adjuvant. Cell Biosci 6:17

    PubMed  PubMed Central  Google Scholar 

  • Yao M et al (2007) Current surgical treatment of squamous cell carcinoma of the head and neck. Oral Oncol 43(3):213–223

    PubMed  Google Scholar 

  • Ye D et al (2013) Inhibitory effect of the HPV-16mE6Delta/mE7/TBhsp70Delta vaccine on oral squamous cell carcinoma. Am J Med Sci 345(5):380–384

    PubMed  Google Scholar 

  • Yete S, D’Souza W, Saranath D (2018) High-risk human papillomavirus in oral cancer: clinical implications. Oncology 94(3):133–141

    PubMed  Google Scholar 

  • Yoo S, Ha SJ (2016) Generation of tolerogenic dendritic cells and their therapeutic applications. Immune Netw 16(1):52–60

    PubMed  PubMed Central  Google Scholar 

  • Yoshitake Y et al (2015) Phase II clinical trial of multiple peptide vaccination for advanced head and neck cancer patients revealed induction of immune responses and improved OS. Clin Cancer Res 21(2):312–321

    CAS  PubMed  Google Scholar 

  • Yuji M et al (2015) Telomerase activity in the occurrence and progression of oral squamous cell carcinoma. J Oral Sci 57(4):295

    Google Scholar 

  • Zamarron BF, Chen W (2011) Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci 7(5):651–658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zandberg DP et al (2015) A phase I dose escalation trial of MAGE-A3- and HPV16-specific peptide immunomodulatory vaccines in patients with recurrent/metastatic (RM) squamous cell carcinoma of the head and neck (SCCHN). Cancer Immunol Immunother 64(3):367–379

    CAS  PubMed  Google Scholar 

  • Zandberg DP, Strome SE (2014) The role of the PD-L1:PD-1 pathway in squamous cell carcinoma of the head and neck. Oral Oncol 50(7):627–632

    CAS  PubMed  Google Scholar 

  • Zhang Y, Tighe S, Zhu Y-T (2020) COX-2 signaling in the tumor microenvironment. In: Birbrair A (ed) Tumor microenvironment: molecular players—Part B. Springer, Cham, pp 87–104

    Google Scholar 

  • Zhao B, Zhao H, Zhao J (2020) Efficacy of PD-1/PD-L1 blockade monotherapy in clinical trials. Ther Adv Med Oncol 12:1758835920937612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F et al (2013) Immune tolerance induced by intravenous transfer of immature dendritic cells via up-regulating numbers of suppressive IL-10(+) IFN-γ(+)-producing CD4(+) T cells. Immunol Res 56(1):1–8

    PubMed  PubMed Central  Google Scholar 

  • Zhou J et al (2015) Correlation of human papilloma virus with oral squamous cell carcinoma in Chinese population. Int J Clin Exp Med 8(10):18172–18178

    PubMed  PubMed Central  Google Scholar 

  • Zhu Y et al (2020) High COX-2 expression in cancer-associated fibroblasts contributes to poor survival and promotes migration and invasiveness in nasopharyngeal carcinoma. Mol Carcinog 59(3):265–280

    CAS  PubMed  Google Scholar 

  • Ziemann F et al (2015) Increased sensitivity of HPV-positive head and neck cancer cell lines to X-irradiation +/− cisplatin due to decreased expression of E6 and E7 oncoproteins and enhanced apoptosis. Am J Cancer Res 5(3):1017–1031

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the funding from the Shandong Provincial Hospital Affiliated to Shandong First Medical University, Grant Number 2020FY027. The authors gratefully acknowledge the financial support provided by the Shandong Provincial Hospital Affiliated to Shandong First Medical University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhe Sun or Zhanwei Chen.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Sun, X., Chen, Z. et al. Head and Neck Squamous Cell Carcinoma: Risk Factors, Molecular Alterations, Immunology and Peptide Vaccines. Int J Pept Res Ther 28, 19 (2022). https://doi.org/10.1007/s10989-021-10334-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10989-021-10334-5

Keywords