Skip to main content
Log in

In Silico Study of Alkaline Serine Protease and Production Optimization in Bacillus sp. Khoz1 Closed Bacillus safensis Isolated from Honey

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Protease is a kind of enzyme with different applications in medicine and industry. The limitation of the enzymes in industry is lack of tolerance for harsh conditions (high temperature, pH, and low water condition). This study intends to evaluate in silico study and screen the alkaline serine protease producing bacteria from honey and optimize the production of low water active alkaline serine protease. Plackett–Burman method was applied to improve effective factors on protease production, including pH, inoculum size, temperature, time, soybean protein, KH2PO4, MgSO4, CaCl2, NaCl, Glycerin and glucose concentration. Further, the Box–Behnken method was used to optimize the significant level of selected factors. Besides, in silico study was utilized to create the enzyme structure and investigate the stability in harsh conditions. The results showed that the highest protease production belongs to Bacillus sp. Khoz1 closed Bacillus safensis, Also temperature, glucose and soybean protein concentration were three significant factors for protease production and the optimized level for them were 35 °C, 0.5 g/l, and 38.32 g/l, respectively. The microorganism was able to produce protease until 98.36 U/ml and it was 98.68% similar to B. safensis. The stability of microbial alkaline serine protease was also determined in high pH and temperature conditions. The best stable condition for isolated protease was pH 9 and temperature at 50 °C. The in silico data showed that this protease has similar 3D structure to Bacillus subtilis Subtilisin E and highly charge amino acids on its surface were that caused this enzyme still activate and stable in low water condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal D, Patidar P, Banerjee T, Patil S (2004) Production of alkaline protease by Penicillium sp. under SSF conditions and its application to soy protein hydrolysis. Process Biochem 39:977–981

    CAS  Google Scholar 

  • Akhi MT et al (2017) nim gene-independent metronidazole-resistant Bacteroides fragilis in surgical site infections. GMS Hyg Infect Control. https://doi.org/10.3205/dgkh000298

    Article  PubMed Central  Google Scholar 

  • Alves MP, Salgado RL, Eller MR, Dias RS, de Paula SO, de Carvalho AF (2018) Temperature modulates the production and activity of a metalloprotease from Pseudomonas fluorescens 07A in milk. J Dairy Sci 101:992–999

    CAS  Google Scholar 

  • Asker MM, Mahmoud MG, El Shebwy K, el Aziz MSA (2013) Purification and characterization of two thermostable protease fractions from Bacillus megaterium. J Genet Eng Biotechnol 11:103–109

    Google Scholar 

  • Bieger B, Essen L-O, Oesterhelt D (2003) Crystal structure of halophilic dodecin: a novel, dodecameric flavin binding protein from Halobacterium salinarum. Structure 11:375–385

    CAS  Google Scholar 

  • Blanco AS, Durive OP, Pérez SB, Montes ZD, Guerra NP (2016) Simultaneous production of amylases and proteases by Bacillus subtilis in brewery wastes. Braz J Microbiol 47:665–674

    CAS  Google Scholar 

  • Boominadhan U, Rajakumar R, Sivakumaar PKV, Joe MM (2009) Optimization of protease enzyme production using Bacillus sp. isolated from different wastes. Bot Res Int 2:83–87

    CAS  Google Scholar 

  • Carley KM, Kamneva NY, Reminga J (2004) Response surface methodology. Carnegie-Mellon University, School of Computer Science, Pittsburgh, PA

    Google Scholar 

  • Carmona C, Gray GL (1987) Nucleotide sequence of the serine protease gene of Staphylococcus aureus, strain V8. Nucleic Acids Res 15:6757

    CAS  PubMed Central  Google Scholar 

  • Chanalia P, Gandhi D, Jodha D, Singh J (2011) Applications of microbial proteases in pharmaceutical industry: an overview. Rev Med Microbiol 22:96–101

    Google Scholar 

  • Chen VB et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D 66:12–21

    CAS  Google Scholar 

  • Chirife J, Zamora MC, Motto A (2006) The correlation between water activity and% moisture in honey: fundamental aspects and application to Argentine honeys. J Food Eng 72:287–292

    Google Scholar 

  • Christiansen T, Nielsen J (2002) Production of extracellular protease and glucose uptake in Bacillus clausii in steady-state and transient continuous cultures. J Biotechnol 97:265–273

    CAS  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519

    CAS  PubMed Central  Google Scholar 

  • Dorra G et al (2018) Purification and characterization of a novel high molecular weight alkaline protease produced by an endophytic Bacillus halotolerans strain CT2. Int J Biol Macromol 111:342–351

    CAS  Google Scholar 

  • Eisenberg D, Lüthy R, Bowie JU (1997) [20] VERIFY3D: assessment of protein models with three-dimensional profiles. Methods in enzymology, vol 277. Elsevier, Amsterdam, pp 396–404

    Google Scholar 

  • Ekici ÖD, Paetzel M, Dalbey RE (2008) Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration. Protein Sci 17:2023–2037

    CAS  PubMed Central  Google Scholar 

  • Ellaiah P, Srinivasulu B, Adinarayana K (2002) A review on microbial alkaline proteases. J Sci Ind Res 61:690–704

    CAS  Google Scholar 

  • Elyasi Far B, Ahmadi Y, Yari-Khosroushahi A, Dilmaghani A (2020) Microbial alpha-amylase production: progress, challenges and perspectives. Adv Pharm Bull

  • Fath M, Fazaelipoor MH (2015) Production of proteases in a novel trickling tray bioreactor. Waste Biomass Valoriz 6:475–480

    CAS  Google Scholar 

  • Fukuchi S, Yoshimune K, Wakayama M, Moriguchi M, Nishikawa K (2003) Unique amino acid composition of proteins in halophilic bacteria. J Mol Biol 327:347–357

    CAS  Google Scholar 

  • Geißler S, Götz F, Kupke T (1996) Serine protease EpiP from Staphylococcus epidermidis catalyzes the processing of the epidermin precursor peptide. J Bacteriol 178:284–288

    PubMed Central  Google Scholar 

  • Gomaa M, Moustafa M, Abouzied M, El-Habashy M (1988) Proteases production 1.-Media and factors affecting protease production by Aspergillus oryzae and Bacillus subtilis. Egyptian Journal of Food Science (Egypt)

  • Hammami A, Hamdi M, Abdelhedi O, Jridi M, Nasri M, Bayoudh A (2017) Surfactant-and oxidant-stable alkaline proteases from Bacillus invictae: characterization and potential applications in chitin extraction and as a detergent additive. Int J Biol Macromol 96:272–281

    CAS  Google Scholar 

  • Harer SL, Bhatia MS, Bhatia NM (2018) Isolation, purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus thuringinsis-SH-II-1A. Afr J Biotechnol 17:178–188

    CAS  Google Scholar 

  • Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88:1895–1898

    CAS  Google Scholar 

  • Jisha VN et al (2013) Versatility of microbial proteases. Adv Enzym Res 1:39

    Google Scholar 

  • Joo H-S, Kumar CG, Park G-C, Kim KT, Paik SR, Chang C-S (2002) Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochem 38:155–159

    CAS  Google Scholar 

  • Karan R, Capes MD, DasSarma S (2012) Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosyst 8:4

    CAS  PubMed Central  Google Scholar 

  • Katzung BG (2017) Basic and clinical pharmacology. McGraw-Hill Education, New York

    Google Scholar 

  • Khuri AI, Mukhopadhyay S (2010) Response surface methodology. Wiley Interdiscip Rev 2:128–149

    Google Scholar 

  • Larkin MA et al. (2007) Clustal W and Clustal X version 2.0 bioinformatics 23:2947–2948

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98

    CAS  PubMed Central  Google Scholar 

  • Magro M et al (2011) Value of the SYNTAX score in patients treated by primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: the MI SYNTAXscore study. Am Heart J 161:771–781

    Google Scholar 

  • Marks DS, Hopf TA, Sander C (2012) Protein structure prediction from sequence variation. Nat Biotechnol 30:1072

    CAS  PubMed Central  Google Scholar 

  • Mhamdi S, Bkhairia I, Nasri R, Mechichi T, Nasri M, Kamoun AS (2017) Evaluation of the biotechnological potential of a novel purified protease BS1 from Bacillus safensis S406 on the chitin extraction and detergent formulation. Int J Biol Macromol 104:739–747

    CAS  Google Scholar 

  • Moorthy IMG, Baskar R (2013) Statistical modeling and optimization of alkaline protease production from a newly isolated alkalophilic Bacillus species BGS using response surface methodology and genetic algorithm. Prep Biochem Biotechnol 43:293–314

    CAS  Google Scholar 

  • Morya VK, Yadav S, Kim E-K, Yadav D (2012) In silico characterization of alkaline proteases from different species of Aspergillus. Appl Biochem Biotechnol 166:243–257

    CAS  Google Scholar 

  • Pant G et al (2015) Production, optimization and partial purification of protease from Bacillus subtilis. J Taibah Univ Sci 9:50–55

    Google Scholar 

  • Pieper U et al (2013) ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 42:D336–D346

    PubMed Central  Google Scholar 

  • Rao CS, Sathish T, Ravichandra P, Prakasham R (2009) Characterization of thermo-and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochem 44:262–268

    Google Scholar 

  • Reddy L, Wee Y-J, Yun J-S, Ryu H-W (2008) Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett–Burman and response surface methodological approaches. Biores Technol 99:2242–2249

    CAS  Google Scholar 

  • Rice K, Peralta R, Bast D, de Azavedo J, McGavin MJ (2001) Description of staphylococcus serine protease (ssp) operon in Staphylococcus aureus and nonpolar inactivation of sspA-encoded serine protease. Infect Immun 69:159–169

    CAS  PubMed Central  Google Scholar 

  • Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364–368

    CAS  Google Scholar 

  • Satomi M, La Duc MT, Venkateswaran K (2006) Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. Int J Syst Evol Microbiol 56:1735–1740

    CAS  Google Scholar 

  • Sevinc N, Demirkan E (2011) Production of protease by Bacillus sp. N-40 isolated from soil and its enzymatic properties. J Biol Environ Sci 5:95–103

    Google Scholar 

  • Seyfi R, Kahaki FA, Ebrahimi T, Montazersaheb S, Eyvazi S, Babaeipour V, Tarhriz V (2019) Antimicrobial peptides (AMPs): roles, functions and mechanism of action. Int J Pept Res Ther. https://doi.org/10.1007/s10989-019-09946-9

    Article  Google Scholar 

  • Snowdon JA, Cliver DO (1996) Microorganisms in honey. Int J Food Microbiol 31:1–26

    CAS  Google Scholar 

  • Soares VF, Castilho LR, Bon EP, Freire DM High-yield Bacillus subtilis protease production by solid-state fermentation. In: Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals (2005), Springer, pp 311–319

  • Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248

    PubMed Central  Google Scholar 

  • Tarhriz V, Mohammadzadeh F, Hejazi MS, Nematzadeh G, Rahimi E (2011) Isolation and characterization of some aquatic bacteria from Qurugol Lake in Azerbaijan under aerobic conditions. Adv Environ Biol 5:3173–3179

    CAS  Google Scholar 

  • Tarhriz V et al (2014) Isolation and characterization of naphtalene-degradation bacteria from Qurugol lake located at Azerbaijan. Biosci Biotechnol Res Asia 11:715–722

    Google Scholar 

  • Tarhriz V, Akbari Z, Dilmaghani A, Hamidi A, Hejazi MA, Hejazi MS (2019a) Bioreduction of iron and biosorption of heavy metals (ni 2+, co 2+, pb 2+) by a novel environmental bacterium, Tabrizicola aquatica rcri19 t. Asian J Water Environ Pollut 16:73–81

    Google Scholar 

  • Tarhriz V, Eyvazi S, Shakeri E, Hejazi MS, Dilmaghani A (2019b) Antibacterial and antifungal activity of novel freshwater bacterium “Tabrizicola aquatica” as a prominent natural antibiotic available in grügol lake. Pharm Sci. https://doi.org/10.15171/PS.2019.56

    Article  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191

    CAS  PubMed Central  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    PubMed Central  Google Scholar 

  • Woods RG, Burger M, Beven C-A, Beacham IR (2001) The aprX–lipA operon of Pseudomonas fluorescens B52: a molecular analysis of metalloprotease and lipase production. Microbiology 147:345–354

    CAS  Google Scholar 

  • Yadav SK, Bisht D, Shikha S, Darmwal NS (2011) Oxidant and solvent stable alkaline protease from Aspergillus flavus and its characterization. Afr J Biotechnol 10:8630–8640

    CAS  Google Scholar 

  • Yossan S, Reungsang A, Yasuda M (2006) Purification and characterization of alkaline protease from Bacillus megaterium isolated from Thai fish sauce fermentation process. Sci Asia 32:377–383

    CAS  Google Scholar 

Download references

Acknowledgements

This project (Ph.D. Thesis) is financially supported by Tabriz University of Medical Sciences, Tabriz, Iran. Grant Number: 58056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azita Dilmaghani.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elyasi Far, B., Yari Khosroushahi, A. & Dilmaghani, A. In Silico Study of Alkaline Serine Protease and Production Optimization in Bacillus sp. Khoz1 Closed Bacillus safensis Isolated from Honey. Int J Pept Res Ther 26, 2241–2251 (2020). https://doi.org/10.1007/s10989-020-10016-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-020-10016-8

Keywords

Navigation