Skip to main content

Advertisement

Log in

Screening for a Potent Antibacterial Peptide to Treat Mupirocin-Resistant MRSA Skin Infections

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Mupirocin is the first-line topical antibacterial drug for treating skin infections caused primarily by meticillin-resistant Staphylococcus aureus (MRSA). Its widespread use since its introduction more than 30 years ago has resulted in the global emergence of mupirocin-resistant strains of MRSA. Antimicrobial peptides (AMPs) are a promising class of antibacterial compounds that can potentially be developed to replace mupirocin due to their rapid membrane-targeting bactericidal mode of action and predicted low propensity for resistance development. Herein, we conducted and compared the antibacterial activities of 61 AMPs between 3 and 11 residues in length reported in the literature over the past decade against mupirocin-resistant MRSA. The most potent AMP, 11-residue peptide 50, was selected and tested against a panel of clinical isolates followed by a time-kill and a human dermal keratinocyte cytotoxicity assay. Lastly, peptide 50 was formulated into a topical spray which showed strong in vitro bactericidal effects against mupirocin-resistant MRSA. Our results strongly suggest that peptide 50 has the potential to be further developed into a new class of topical antibacterial agent for treating drug-resistant MRSA skin infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbassi F, Lequin O, Piesse C, Goasdoué N, Foulon T, Nicolas P, Ladram A (2010) Temporin-SHf, a new type of phe-rich and hydrophobic ultrashort antimicrobial peptide. J Biol Chem 285:16880–16892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad A, Ahmad E, Rabbani G, Haque S, Arshad M, Rizwan HK (2012) Identification and design of antimicrobial peptides for therapeutic applications. Curr Protein Pept Sci 13:211–223

    Article  CAS  PubMed  Google Scholar 

  • Antonov NK, Garzon MC, Morel KD, Whittier S, Planet PJ, Lauren CT (2015) High prevalence of mupirocin resistance in Staphylococcus aureus isolates from a pediatric population. Antimicrob Agents Chemother 59:3350–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asoodeh A, Zardini HZ, Chamani J (2012) Identification and characterization of two novel antimicrobial peptides, temporin-Ra and temporin-Rb, from skin secretions of the marsh frog Rana ridibunda. J Pept Sci 18:10–16

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Liu S, Jiang P, Zhou L, Li J, Tang C, Verma C, Mu Y, Beuerman RW, Pervushin K (2009) Structure-dependent charge density as a determinant of antimicrobial activity of peptide analogues of defensin. Biochemistry 48:7229–7239

    Article  CAS  PubMed  Google Scholar 

  • Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38:217–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Catiau L, Traisnel J, Delval-Dubois V, Chihib NE, Guillochon D, Nedjar-Arroume N (2011a) Minimal antimicrobial peptidic sequence from hemoglobin alpha-chain: KYR. Peptides 32:633–638

    Article  CAS  PubMed  Google Scholar 

  • Catiau L, Traisnel J, Chihib NE, Le Flem G, Blanpain A, Melnyk O, Guillochon D, Nedjar-Arroume N (2011b) RYH: a minimal peptidic sequence obtained from beta-chain hemoglobin exhibiting an antimicrobial activity. Peptides 32:1463–1468

    Article  CAS  PubMed  Google Scholar 

  • Chan DI, Prenner EJ, Vogel HJ (2006) Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta 1758:1184–1202

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Pan F, Zhang S, Hu J, Cao M, Wang J, Xu H, Zhao X, Lu JR (2010) Antibacterial activities of short designer peptides: a link between propensity for nanostructuring and capacity for membrane destabilization. Biomacromolecules 11:402–411

    Article  CAS  PubMed  Google Scholar 

  • Cherkasov A, Hilpert K, Jenssen H, Fjell CD, Waldbrook M, Mullaly SC, Volkmer R, Hancock REW (2009) Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. ACS Chem Biol 4:65–74

    Article  CAS  PubMed  Google Scholar 

  • Clinical and Laboratory Standards Institute (2012) Approved standard ninth edition. Document M07-A9, methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, vol 32. CLSI, Wayne

    Google Scholar 

  • Coates T, Bax R, Coates A (2009) Nasal decolonization of Staphylococcus aureus with mupirocin: strengths, weaknesses and future prospects. J Antimicrob Chemother 64:9–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fjell CD, Jenssen H, Hilpert K, Cheung WA, Panté N, Hancock REW, Cherkasov A (2009) Identification of novel antibacterial peptides by chemoinformatics and machine learning. J Med Chem 52:2006–2015

    Article  CAS  PubMed  Google Scholar 

  • De La Fuente-Núñez C, Korolik V, Bains M, Nguyen U, Breidenstein EB, Horsman S, Lewenza S, Burrows L, Hancock REW (2012) Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agents Chemother 56:2696–2704

    Article  PubMed  PubMed Central  Google Scholar 

  • Dryden MS (2010) Complicated skin and soft tissue infection, J Antimicrob Chemother 65(Suppl. 3): iii35–iii44

    CAS  PubMed  Google Scholar 

  • Eltringham I (1997) Mupirocin resistance and methicillin-resistant Staphylococcus aureus (MRSA). J Hosp Infect 35:1–8

    Article  CAS  PubMed  Google Scholar 

  • EMA: European public assessment report (EPAR) of Altargo (2007) http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Scientific_Discussion/human/000757/WC500024406.pdf. Accessed 5 Dec 2016

  • Friden T (2013) Antibiotic resistance threats in the United States, 2013. http://www.cdc.gov/drugresistance/threat-report-2013/. Accessed 5 Dec 2016

  • Godballe T, Mojsoska B, Nielsen HM, Jenssen H (2015) Antimicrobial activity of GN peptides and their mode of action. Biopolymers 106:172–183

    Article  Google Scholar 

  • Gopal R, Seo CH, Song PI, Park Y (2013) Effect of repetitive lysine-tryptophan motifs on the bactericidal activity of antimicrobial peptides. Amino Acids 44:645–660

    Article  CAS  PubMed  Google Scholar 

  • Gould IM (2006) Costs of hospital-acquired methicillin-resistant Staphylococcus aureus (MRSA) and its control. Int J Antimicrob Agents 28:379–384

    Article  CAS  PubMed  Google Scholar 

  • Guzmán F, Marshall S, Ojeda C, Albericio F, Carvajal-Rondanelli P (2013) Inhibitory effect of short cationic homopeptides against gram-positive bacteria. J Pept Sci 19:792–800

    Article  PubMed  Google Scholar 

  • Hancock REW, Sahl H (2006) Antimicrobial and host-defense peptides as new antiinfective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Hetem DJ, Bonten MJM (2013) Clinical relevance of mupirocin resistance in Staphylococcus aureus. J Hosp Infect 85:249–256

    Article  CAS  PubMed  Google Scholar 

  • Hilpert K, Volkmer-Engert R, Walter T, Hancock REW (2005) High-throughput generation of small antibacterial peptides with improved activity. Nat Biotechnol 23:1008–1012

    Article  CAS  PubMed  Google Scholar 

  • Hilpert K, Elliott M, Jenssen H, Kindrachuk J, Fjell CD, Körner J, Winkler DFH, Weaver LL, Henklein P, Ulrich AS, Chiang SHY, Farmer SW, Pante N, Volkmer R, Hancock REW (2009) Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem Biol 16:58–69

    Article  CAS  PubMed  Google Scholar 

  • Hon PY, Koh TH, Tan TY, Krishnan P, Leong JW, Jureen R, Chan J, Tee NW, Murugesh J, Chan KS, Hsu LY (2014) Changing molecular epidemiology and high rates of mupirocin resistance among meticillin-resistant Staphylococcus aureus in Singaporean hospitals. J Glob Antimicrob Resist 2:53–55

    Article  PubMed  Google Scholar 

  • Hou X, Du Q, Li R, Zhou M, Wang H, Wang L, Guo C, Chen T, Shaw C (2015) Feleucin-BO1: a novel antimicrobial non-apeptide amide from the skin secretion of the toad, Bombina orientalis, and design of a potent broad-spectrum synthetic analogue, feleucin-K3. Chem Biol Drug Des 85:259–267

    Article  CAS  PubMed  Google Scholar 

  • Iannucci NB, Curto LM, Albericio F, Cascone O, Delfino JM (2014) Structural glance into a novel anti-staphylococcal peptide. Biopolymers 102:49–57

    Article  CAS  PubMed  Google Scholar 

  • Juba M, Porter D, Dean S, Gillmor S, Bishop B (2013) Characterization and performance of short cationic antimicrobial peptide isomers. Biopolymers 100:387–401

    Article  CAS  PubMed  Google Scholar 

  • Kang SJ, Won HS, Choi WS, Lee BJ (2009) De novo generation of antimicrobial LK peptides with a single tryptophan at the critical amphipathic interface. J Pept Sci 15:583–588

    Article  CAS  PubMed  Google Scholar 

  • Kinch MS, Patridge E, Plummer M, Hoyer D (2014) An analysis of FDA-approved drugs for infectious disease: antibacterial agents. Drug Discov Today 19:1283–1287

    Article  CAS  PubMed  Google Scholar 

  • Konno K, Hisada M, Fontana R, Lorenzi CCB, Naoki H, Itagaki Y, Miwa A, Kawai N, Nakata Y, Yasuhara T, Neto JR, De Azevedo WF Jr, Palma MS, Nakajima T (2001) Anoplin, a novel antimicrobial peptide from the venom of the solitary wasp Anoplius samariensis. Biochim Biophys Acta 1550:70–80

    Article  CAS  PubMed  Google Scholar 

  • Kukowska M, Kukowska-Kaszuba M, Dzierzbicka K (2015) In vitro studies of antimicrobial activity of Gly-His-Lys conjugates as potential and promising candidates for therapeutics in skin and tissue infections. Bioorg Med Chem Lett 25:542–546

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Kim SJ, Lee YS, Song MD, Kim IH, Won HS (2011) De novo generation of short antimicrobial peptides with simple amino acid composition. Regul Pept 166:36–41

    Article  CAS  PubMed  Google Scholar 

  • Lepainteur M, Royer G, Bourrel AS, Romain O, Duport C, Doucet-Populaire F, Decousser JW (2013) Prevalence of resistance to antiseptics and mupirocin among invasive coagulase-negative staphylococci from very preterm neonates in NICU: the creeping threat? J Hosp Infect 83:333–336

    Article  CAS  PubMed  Google Scholar 

  • Li X, Li P, Saravanan R, Basu A, Mishra B, Lim SH, Su X, Tambyah PA, Leong SSJ (2014) Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties. Acta Biomater 10:258–266

    Article  CAS  PubMed  Google Scholar 

  • Lim K, Chua RR, Saravanan R, Basu A, Mishra B, Tambyah PA, Ho B, Leong SSJ (2013) Immobilization studies of an engineered arginine-tryptophan-rich peptide on a silicone surface with antimicrobial and antibiofilm activity. ACS Appl Mater Interfaces 5:6412–6422

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Brady A, Young A, Rasimick B, Chen K, Zhou C, Kallenbach NR (2007) Length effects in antimicrobial peptides of the (RW)n series. Antimicrob Agents Chemother 51:597–603

    Article  CAS  PubMed  Google Scholar 

  • Lung FD, Wang KS, Liao ZJ, Hsu SK, Song FY, Liou CC, Wu YS (2012) Discovery of potent antimicrobial peptide analogs of Ixosin-B. Bioorg Med Chem Lett 22:4185–4188

    Article  CAS  PubMed  Google Scholar 

  • Marr AK, Gooderham WJ, Hancock REW (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6:468–472

    Article  CAS  PubMed  Google Scholar 

  • Melo MN, Ferre R, Castanho MARB (2009) Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol 7:245–250

    Article  CAS  PubMed  Google Scholar 

  • Mohamed MF, Hamed MI, Panitch A, Seleem MN (2014) Targeting methicillin-resistant Staphylococcus aureus with short salt-resistant synthetic peptides. Antimicrob Agents Chemother 58:4113–4122

    Article  PubMed  PubMed Central  Google Scholar 

  • Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, Carey RB, Talan DA (2006) Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med 355:666–674

    Article  CAS  PubMed  Google Scholar 

  • Munk JK, Uggerhøj LE, Poulsen TJ, Frimodt-Møller N, Wimmer R, Nyberg NT, Hansen PR (2013) Synthetic analogs of anoplin show improved antimicrobial activities. J Pept Sci 19:669–675

    Article  CAS  PubMed  Google Scholar 

  • Murugan RN, Jacob B, Kim EH, Ahn M, Sohn H, Seo JH, Cheong C, Hyun JK, Lee KS, Shin SY, Bang JK (2013) Non hemolytic short peptidomimetics as a new class of potent and broad-spectrum antimicrobial agents. Bioorg Med Chem Lett 23:4633–4636

    Article  CAS  PubMed  Google Scholar 

  • Naidoo VB, Rautenbach M (2013) Self-assembling organo-peptide bolaphiles with KLK tripeptide head groups display selective antibacterial activity. J Pept Sci 19:784–791

    Article  CAS  PubMed  Google Scholar 

  • Ong ZY, Gao SJ, Yang YY (2013) Short synthetic β-sheet forming peptide amphiphiles as broad spectrum antimicrobials with antibiofilm and endotoxin neutralizing capabilities. Adv Funct Mater 23:3682–3692

    Article  CAS  Google Scholar 

  • Park KH, Park Y, Park IS, Hahm KS, Shin SY (2008) Bacterial selectivity and plausible mode of antibacterial action of designed Pro-rich short model antimicrobial peptides. J Pept Sci 14:876–882

    Article  CAS  PubMed  Google Scholar 

  • Park KH, Nan YH, Park Y, Kim JI, Park IS, Hahm KS, Shin SY (2009) Cell specificity, anti-inflammatory activity, and plausible bactericidal mechanism of designed Trp-rich model antimicrobial peptides. Biochim Biophys Acta 1788:1193–1203

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Kim SM, Park SD (2012) The prevalence, genotype and antimicrobial susceptibility of high- and low-Level mupirocin resistant methicillin-resistant Staphylococcus aureus. Ann Dermatol 24:32–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasupuleti M, Schmidtchen A, Chalupka A, Ringstad L, Malmsten M (2009) End-tagging of ultra-short antimicrobial peptides by W/F stretches to facilitate bacterial killing. PLoS One 4:e5285

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel JB, Gorwitz RJ, Jernigan JA (2009) Mupirocin resistance. Clin Infect Dis 49:935–941

    Article  CAS  PubMed  Google Scholar 

  • Poovelikunnel T, Gethin G, Humphreys H (2015) Mupirocin resistance: clinical implications and potential alternatives for the eradication of MRSA. J Antimicrob Chemother 70:2681–2692

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Zhou C, Li P, Xu W, Cao Y, Ling H, Chen WN, Li CM, Xu R, Lamrani M, Mu Y, Leong SSJ, Chang MW, Chan-Park MB (2010) Novel short antibacterial and antifungal peptides with low cytotoxicity: efficacy and action mechanisms. Biochem Biophys Res Commun 398:594–600

    Article  CAS  PubMed  Google Scholar 

  • Ramón-García S, Mikut R, Ng C, Ruden S, Volkmer R, Reischl M, Hilpert K, Thompson CJ (2013) Targeting Mycobacterium tuberculosis and other microbial pathogens using improved synthetic antibacterial peptides. Antimicrob Agents Chemother 57:2295–2303

    Article  PubMed  PubMed Central  Google Scholar 

  • Rathinakumar R, Walkenhorst WF, Wimley WC (2009) Broad-spectrum antimicrobial peptides by rational combinatorial design and high-throughput screening: the importance of interfacial activity. J Am Chem Soc 131:7609–7617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rittenhouse S, Biswas S, Broskey J, McCloskey L, Moore T, Vasey S, West J, Zalacain M, Zonis R, Payne D (2006) Selection of Retapamulin, a novel pleuromutilin for topical use. Antimicrob Agents Chemother 50:3882–3885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romanelli A, Moggio L, Montella RC, Campiglia P, Iannaccone M, Capuano F, Pedone C, Capparelli R (2011) Peptides from royal jelly: studies on the antimicrobial activity of jelleins, jelleins analogs and synergy with temporins. J Pept Sci 17:348–352

    Article  CAS  PubMed  Google Scholar 

  • Sader HS, Fedler KA, Rennie RP, Stevens S, Jones RN (2004) Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: spectrum of antimicrobial activity and measurements of bactericidal activity. Antimicrob Agents Chemother 48:3112–3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanan R, Li X, Lim K, Mohanram H, Peng L, Mishra B, Basu A, Lee JM, Bhattacharjya S, Leong SSJ (2014) Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance and biocompatibility. Biotechnol Bioeng 111:37–49

    Article  CAS  PubMed  Google Scholar 

  • Shin S, Kim JK, Lee JY, Jung KW, Hwang JS, Lee J, Lee DG, Kim I, Shin SY, Kim Y (2009) Design of potent 9-mer antimicrobial peptide analogs of protaetiamycine and investigation of mechanism of antimicrobial action. J Pept Sci 15:559–568

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Kumar S, Shekhar S, Dhawan B, Dey S (2014) Synthesis and biological evaluation of novel peptide BF2 as an antibacterial agent against clinical isolates of vancomycin-resistant enterococci. J Med Chem 57:8880–8885

    Article  CAS  PubMed  Google Scholar 

  • Spindler EC, Hale JD, Giddings TH Jr, Hancock REW, Gill RT (2011) Deciphering the mode of action of the synthetic antimicrobial peptide Bac8c. Antimicrob Agents Chemother 55:1706–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens DL, Bisno AL, Chambers HF, Everett ED, Dellinger P, Goldstein EJ, Gorbach SL, Hirschmann JV, Kaplan EL, Montoya JG, Wade JC (2005) Practice guidelines for the diagnosis and management of skin and soft-tissue infections. Clin Infect Dis 41:1373–1406

    Article  PubMed  Google Scholar 

  • Sundriyal S, Sharma RK, Jain R, Bharatam PV (2008) Minimum requirements of hydrophobic and hydrophilic features in cationic peptide antibiotics (CPAs). J Mol Model 14:265–278

    Article  CAS  PubMed  Google Scholar 

  • Torcato IM, Huang YH, Franquelim HG, Gaspar D, Craik DJ, Castanho MA, Henriques ST (2013) Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria. Biochim Biophys Acta 1828:944–955

    Article  CAS  PubMed  Google Scholar 

  • Upton A, Lang S, Heffernan H (2003) Mupirocin and Staphylococcus aureus: a recent paradigm of emerging antibiotic resistance. J Antimicrob Chemother 51:613–617

    Article  CAS  PubMed  Google Scholar 

  • Waksman SA, Lechevalier HA, Harris DA (1949) Neomycin - production and antibiotic properties. J Clin Invest 28:934–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh EG, Maher S, Devocelle M, O’Brien PJ, Baird AW, Brayden DJ (2011) High content analysis to determine cytotoxicity of the antimicrobial peptide, melittin and selected structural analogs. Peptides 32:1764–1773

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen J, Zheng X, Yang X, Ma P, Cai Y, Zhang B, Chen Y (2014) Design of novel analogues of short antimicrobial peptide anoplin with improved antimicrobial activity. J Pept Sci 20:945–951

    Article  CAS  PubMed  Google Scholar 

  • Wei SY, Wu JM, Kuo YY, Chen HL, Yip BS, Tzeng SR, Cheng JW (2006) Solution structure of a novel tryptophan-rich peptide with bidirectional antimicrobial activity. J Bacteriol 188:328–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol 5:905–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worby CJ, Jeyaratnam D, Robotham JV, Kypraios T, O’Neill PD, De Angelis D, French G, Cooper BS (2013) Estimating the effectiveness of isolation and decolonization measures in reducing transmission of methicillin-resistant Staphylococcus aureus in hospital general wards. Am J Epidemiol 177:1306–1313

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X, Wang Y, Lee WH, Zhang Y (2013) Antimicrobial peptides from the venom gland of the social wasp Vespa tropica. Toxicon 74:151–157

    Article  CAS  PubMed  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    Article  CAS  PubMed  Google Scholar 

  • Yeung ATY, Gellatly SL, Hancock REW (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68:2161–2176

    Article  CAS  PubMed  Google Scholar 

  • Youn SH, Lee SS, Kim S, Lee JA, Kim BJ, Kim J, Han HK, Kim JS (2015) Drug utilization review of mupirocin ointment in a Korean university-affiliated hospital. Korean J Intern Med 30:515–520

    Article  PubMed  PubMed Central  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Falla TJ (2006) Antimicrobial peptides: therapeutic potential. Expert Opin Pharmacother 7:653–663

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Róg T, Gurtovenko AA, Vattulainen I, Karttunen M (2008) Role of phosphatidylglycerols in the stability of bacterial membranes. Biochimie 90:930–938

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Liu SP, Chen LY, Li J, Ong LB, Guo L, Wohland T, Tang CC, Lakshminarayanan R, Mavinahalli J, Verma C,  Beuerman RW (2011) The structural parameters for antimicrobial activity, human epithelial cell cytotoxicity and killing mechanism of synthetic monomer and dimer analogues derived from hBD3 C-terminal region. Amino Acids 40:123–133

    Article  CAS  PubMed  Google Scholar 

  • Zorko M, Japelj B, Hafner-Bratkovic I, Jerala R (2009) Expression, purification and structural studies of a short antimicrobial peptide. Biochim Biophys Acta 1788:314–323

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the A*STAR Biomedical Research Council (Singapore).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Brian Chia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The work described herein does not involve human participants or animals.

Informed consent

Informed consent not applicable.

Additional information

Siew Mei Samantha Ng, Hui Si Vivian Ching, and GuiFang Xu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, S.M.S., Ching, H.S.V., Xu, G. et al. Screening for a Potent Antibacterial Peptide to Treat Mupirocin-Resistant MRSA Skin Infections. Int J Pept Res Ther 23, 481–491 (2017). https://doi.org/10.1007/s10989-017-9580-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-017-9580-x

Keywords

Navigation