Skip to main content
Log in

ACPP: A Web Server for Prediction and Design of Anti-cancer Peptides

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Cancer is one of the most common diseases, which causes more mortality worldwide. Despite the presence of several therapies against cancer, peptides as therapeutic agents are gaining importance. Experimental studies report that peptides containing apoptotic domain exhibit anticancer activity. Hence in this study, we propose a computational method using support vector machine and protein relatedness measure feature vector, in which provision was made to assess the query protein for the presence of any apoptotic domains or not and then to scan/predict the anti-cancer peptides in the protein. Different datasets, including newly developed positive and negative dataset, AntiCP dataset, and balanced randomly generated peptides were used to validate the proposed method. The validation results on independent dataset suggested (sensitivity = 0.95; specificity = 0.97; MCC = 0.92; and Accuracy = 0.96) that the proposed method outperformed the existing method in predicting anti-cancer peptides. The user friendly webserver includes three different modes (i) Protein scan with apoptotic domain prediction; (ii) Multiple peptide mode; and (iii) Peptide mutation mode for prediction and design of anti-cancer peptides. The server was developed using PERL CGI and freely accessible at http://acpp.bicpu.edu.in/predict.php. The established tool will be useful in investigating and designing potent anti-cancer peptides from the query protein effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashburner M et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. doi:10.1038/75556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Breiman L (2001) Random forests. Mach learn 45:5–32

    Article  Google Scholar 

  • Cai D et al (2014) Hydrophobic penetrating peptide PFVYLI-modified stealth liposomes for doxorubicin delivery in breast cancer therapy. Biomaterials 35:2283–2294

    Article  CAS  PubMed  Google Scholar 

  • Carr K, Murray E, Armah E, He RL, Yau SS-T (2010) A rapid method for characterization of protein relatedness using feature vectors. PLoS ONE 5:e9550

    Article  PubMed Central  PubMed  Google Scholar 

  • Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2:27

    Google Scholar 

  • Consortium U (2013) Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Res 41:D43–D47

    Article  Google Scholar 

  • Cortes C, Vapnik V (1995) Support vector machine. Machine learning 20:273–297

    Google Scholar 

  • Ellerby HM et al (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5:1032–1038. doi:10.1038/12469

    Article  CAS  PubMed  Google Scholar 

  • El-Manzalawy Y, Honavar V (2005) WLSVM: Integrating libsvm into WEKA environment. Software available at http://www.csiastateedu/yasser/wlsvm. Accessed 14 Jan 2012

  • Freund Y, Schapire R, Abe N (1999) A short introduction to boosting. J Jpn Soc Artif Intell 14:1612

    Google Scholar 

  • Gautam A, Singh H, Tyagi A, Chaudhary K, Kumar R, Kapoor P, Raghava G (2012) CPPsite: a curated database of cell penetrating peptides. Database 2012:bas015

  • Gautam A, Kapoor P, Chaudhary K, Kumar R, Raghava G, Consortium SDD (2014) Tumor homing peptides as molecular probes for cancer therapeutics, diagnostics and theranostics. Curr Med Chem 21:2367–2391

    Article  CAS  PubMed  Google Scholar 

  • Hajisharifi Z, Piryaiee M, Mohammad Beigi M, Behbahani M, Mohabatkar H (2014) Predicting anticancer peptides with Chou’s pseudo amino acid composition and investigating their mutagenicity via Ames test. J Theor Biol 341:34–40. doi:10.1016/j.jtbi.2013.08.037

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682. doi:10.1093/bioinformatics/btq003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang YB, Wang XF, Wang HY, Liu Y, Chen Y (2011) Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Mol Cancer Ther 10:416–426. doi:10.1158/1535-7163.MCT-10-0811

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. doi:10.3322/caac.20107

    Article  PubMed  Google Scholar 

  • Jones P et al (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kakde D, Jain D, Shrivastava V, Kakde R, Patil A (2011) Cancer therapeutics-opportunities, challenges and advances in drug delivery. J Appl Pharm Sci 1:1–10

    Google Scholar 

  • Karbalaeemohammad S, Naderi-Manesh H (2011) Two novel anticancer peptides from Aurein1. 2. Int J Pept Res Ther 17:159–164

    Article  CAS  Google Scholar 

  • Mendoza FJ, Espino PS, Cann KL, Bristow N, McCrea K, Los MJ (2005) Anti-tumor chemotherapy utilizing peptide-based approaches-apoptotic pathways, kinases, and proteasome as targets. Arch Immunol Ther Exp 53:47–60

    CAS  Google Scholar 

  • Mehta D et al (2014) ParaPep: a web resource for experimentally validated antiparasitic peptide sequences and their structures. Database 2014:bau051

  • Novkovic M, Simunic J, Bojovic V, Tossi A, Juretic D (2012) DADP: the database of anuran defense peptides. Bioinformatics 28:1406–1407. doi:10.1093/bioinformatics/bts141

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan K, Shanthi V, Rajasekaran R, Sudandiradoss C, Doss CGP, Sethumadhavan R (2011) Predicting Therapeutic Template by Evaluating the Structural Stability of Anti-Cancer Peptides—A Computational Approach. Int J Pept Res Ther 17:31–38

    Article  CAS  Google Scholar 

  • Ryu JS, Raucher D (2014) Anti-tumor efficacy of a therapeutic peptide based on thermo-responsive elastin-like polypeptide in combination with gemcitabine. Cancer Lett 348(1–2):177–184

    Article  CAS  PubMed  Google Scholar 

  • Saravanan V, Lakshmi PT (2013a) APSLAP: an adaptive boosting technique for predicting subcellular localization of apoptosis protein. Acta Biotheor 61:481–497. doi:10.1007/s10441-013-9197-1

    Article  PubMed  Google Scholar 

  • Saravanan V, Lakshmi PT (2013b) SCLAP: an adaptive boosting method for predicting subchloroplast localization of plant proteins. OMICS 17:106–115. doi:10.1089/omi.2012.0070

    Article  CAS  PubMed  Google Scholar 

  • Saravanan V, Lakshmi P (2014a) Dualpred: A Webserver for Predicting Plant Proteins Dual-Targeted To Chloroplast and Mitochondria Using Split Protein-Relatedness-Measure Feature. Curr Bioinform. doi:10.2174/1574893609666140226000041

    Google Scholar 

  • Saravanan V, Lakshmi P (2014b) Fuzzy Logic for Personalized Healthcare and Diagnostics: FuzzyApp-A Fuzzy Logic Based Allergen-Protein Predictor. OMICS 18:570–581. doi:10.1089/omi.2014.0021

    Article  CAS  PubMed  Google Scholar 

  • Shapira S, Fokra A, Arber N, Kraus S (2014) Peptides for Diagnosis and Treatment of Colorectal Cancer. Curr Med Chem 21:2410–2416

    Article  CAS  PubMed  Google Scholar 

  • Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S (2010) CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res 38:D774–D780. doi:10.1093/nar/gkp1021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thundimadathil J (2012) Cancer treatment using peptides: current therapies and future prospects. J Amino Acids 2012:13. doi:10.1155/2012/967347

    Article  Google Scholar 

  • Tyagi A, Kapoor P, Kumar R, Chaudhary K, Gautam A, Raghava GP (2013) In silico models for designing and discovering novel anticancer peptides. Sci Rep 3:2984. doi:10.1038/srep02984

    Article  PubMed  Google Scholar 

  • Uppada SB, Erickson T, Wojdyla L, Moravec DN, Song Z, Cheng J, Puri N (2014) Novel delivery system for T-oligo using a nanocomplex formed with an alpha helical peptide for melanoma therapy. Int J Nanomed 9:43

    Google Scholar 

  • Van Dorpe S et al (2012) Brainpeps: the blood–brain barrier peptide database. Brain Struct Funct 217:687–718

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37:D933–D937. doi:10.1093/nar/gkn823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Gu C (2008) Support vector machines versus Boosting. Electrical Engineering UC, Berkeley

    Google Scholar 

Download references

Acknowledgments

Saravanan Vijayakumar is supported by the DBT-BINC, senior research fellow. The authors thank Centre for Bioinformatics for providing necessary computational facility and Dr. Archana Pan (Centre for Bioinformatics, Pondicherry University) and Dr. Sivasathya (Department of Computer Science, Ponidcherry University) for their valuable suggestions.

Compliance with Ethics Guildlines

Conflict of interest

Saravanan Vijayakumar and PTV. Lakshmi declares that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi PTV.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 497 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayakumar, S., PTV, L. ACPP: A Web Server for Prediction and Design of Anti-cancer Peptides. Int J Pept Res Ther 21, 99–106 (2015). https://doi.org/10.1007/s10989-014-9435-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-014-9435-7

Keywords

Navigation