Skip to main content
Log in

Cell Penetrating Apidaecin Peptide Interactions with Biomimetic Phospholipid Membranes

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Apidaecin peptides from Apis mellifera hemolymph are believed to attack intracellular bacterial targets. Our in vivo results for apidaecins 1a and 1b confirm that bacterial activity is non-lytic, however, the manner in which these peptides pass through the cell membrane to exert this activity is unknown. These data are combined with fluorescence (dye leakage) and quartz crystal microbalance studies to investigate the membrane interaction for these two wildtype peptides. It was found that the peptides penetrate the membrane in a trans-membrane manner. The amount of peptide uptake by the membrane is proportional to the concentration of the peptide, however, this appears to be a dynamic equilibrium which can be almost completely reversed by addition of buffer medium. Interestingly, a small residual mass remains within the membrane and the amount of peptide remaining in the membrane is a function of the buffer-salt concentration viz. in high salt, the residual peptide mass remaining is small whereas at low salt concentration, a larger mass of peptide remains bound. These results support a direct membrane penetration mechanism by the wild type apidaecins 1a and 1b. In both cases the peptide–membrane interaction has a negligible effect on the membrane, although, in high salt a permanent change in the membrane does occur at the highest peptide concentration which does not recover following peptide removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MPA:

Mercaptopropionic acid

SAM:

Self-assembled monolayer

MIC:

Minimal inhibitory concentration

TSB:

Tryptic soy broth

QCM:

Quartz crystal microbalance

TFA:

Trifluoroacetic acid

ONPG:

o-nitrophenyl-β-galactoside

DMPC:

1,2-dimyristoyl-sn-glycero-3-(phosphocholine)

DMPG:

1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] sodium salt

PBS:

Phosphate buffered saline

DPPC:

Dipalmitoylphosphatidylcholine

SUVs:

Small unilamellar vesicles

Tris-HCl:

Tris(hydroxymethyl)aminomethane hydrochloride

f :

Frequency change

D :

Dissipation change

EDTA:

Ethylenediaminetetracetic acid

RP-HPLC:

Reverse phase-high performance liquid chromatography

References

  • Barra D, Simmaco M, Boman HG (1998) Gene encoded peptide antibiotics and innate immunity. Do ‘animalcules’ have defence budgets? FEBS Lett 430:130–134

    Article  PubMed  CAS  Google Scholar 

  • Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13:61–92

    Article  PubMed  CAS  Google Scholar 

  • Casteels P, Tempst P (1994) Apidaecin-type peptide antibiotics function through a non-poreforming mechanism involving stereospecificity. Biochem Biophys Res Commun 199:339–345

    Article  PubMed  CAS  Google Scholar 

  • Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P (1989) Apidaecins: antibacterial peptides from honeybees. EMBO J 8:2387–2391

    PubMed  CAS  Google Scholar 

  • Castle M, Nazarian A, Yi SS, Tempst P (1999) Lethal effects of apidaecin on Escherichia coli involve sequential molecular interactions with diverse targets. J Biol Chem 274:32555–32564

    Article  PubMed  CAS  Google Scholar 

  • Czihal P, Hoffmann R (2009) Mapping of apidaecin regions relevant for antimicrobial activity and bacterial internalization. Int J Pept Res Ther (this issue)

  • Dutta RC, Nagpal S, Salunke DM (2008) Functional mapping of apidaecin through secondary structure correlation. Int J Biochem Cell Biol 40:1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Fleming BD, Praporski S, Bond AM, Martin LL (2008) Electrochemical quartz crystal microbalance study of azurin adsorption onto an alkanethiol self-assembled monolayer on gold. Langmuir 24:323–327

    Article  PubMed  CAS  Google Scholar 

  • Frisken BJ, Asman C, Patty PJ (2000) Studies of vesicle extrusion. Langmuir 16:928–933

    Article  CAS  Google Scholar 

  • Gallo RL, Huttner KM (1998) Antimicrobial peptides: an emerging concept in cutaneous biology. J Invest Dermatol 111:739–743

    Article  PubMed  CAS  Google Scholar 

  • Hancock REW (2000) Cationic antimicrobial peptides: towards clinical applications. Expert Opin Invest Drugs 9:1723–1729

    Article  CAS  Google Scholar 

  • Kandasamy SK, Larson RG (2006) Effect of salt on the interactions of antimicrobial peptides with zwitterionic lipid bilayers. Bichem Biophys Acta 1758:1274–1284

    Article  CAS  Google Scholar 

  • Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L Jr (2001) The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone assisted protein folding. Biochemistry 40:3016–3026

    Article  PubMed  CAS  Google Scholar 

  • Li W-F, Ma G-X, Zhou X-X (2006) Apidaecin-type peptides: biodiversity, structure-function relationships and mode of action. Peptides 27:2350–2359

    Article  PubMed  CAS  Google Scholar 

  • Mechler A, Nawaratna G, Aguilar M-I, Martin LL (2006) A study of protein electrochemistry on a supported membrane electrode. Int J Pept Res Therapeutics 12(3):217–224

    Article  CAS  Google Scholar 

  • Mechler A, Praporski S, Atmurt K, Boland M, Separovic F, Martin LL (2007) Specific and selective peptide–membrane interactions revealed using quartz crystal microbalance. Biophys J 93:3907–3916

    Article  PubMed  CAS  Google Scholar 

  • Mechler A, Piantavigna S, Praporski S, Heaton SM, Hall KN, Aguilar M-I, Martin LL (2009) Structure and homogeneity of pseudo-physiological phospholipid bilayers and their deposition characteristics on carboxylic acid terminated self-assembled monolayers. Biomaterials 30(4):682–689

    Article  PubMed  CAS  Google Scholar 

  • Moellering RC Jr (1998) Introduction: problems with antimicrobial resistance in gram-positive cocci. Clin Infect Dis 26:1177–1178

    Article  PubMed  Google Scholar 

  • Otvos L (2002) The short proline-rich antibacterial peptide family. Cell Mol Life Sci 59:1138–1150

    Article  PubMed  CAS  Google Scholar 

  • Rex S (1996) Pore formation induced by the peptide melittin in different lipid vesicle membranes. Biophys Chem 58:75–85

    Article  PubMed  CAS  Google Scholar 

  • Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift fur Physik 155:206–222

    Article  CAS  Google Scholar 

  • Shai Y (1995) Molecular recognition between membrane-spanning polypeptides. Trends Biochem Sci 20:460–464

    Article  PubMed  CAS  Google Scholar 

  • Singer D, Volke D, Hoffmann R (2005) Characterization of phosphorylation dependent antibodies to study the phosphorylation status of the Tau protein. Int J Pept Res Ther 11:279–289

    Article  CAS  Google Scholar 

  • Tomasz A (1994) Multiple-antibiotic-resistant pathogenic bacteria. N Engl J Med 330:1247–1251

    Article  PubMed  CAS  Google Scholar 

  • Volles DF, Branan TN (2008) Antibiotics in intensive care unit: focus on agents for resistant pathogens. Emerg Med Clin N Am 26:813–834

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the Australian Research Council Discovery Grant DP0662816 to LLM and AM, Monash Fellowship to AM and the support of Mr Paul Barrett, ATA Scientific. This work was supported by the European Fund for Regional Structure Development (EFRE, European Union and Free State Saxony) to RH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisandra L. Martin.

Additional information

Stefania Piantavigna and Patricia Czihal contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piantavigna, S., Czihal, P., Mechler, A. et al. Cell Penetrating Apidaecin Peptide Interactions with Biomimetic Phospholipid Membranes. Int J Pept Res Ther 15, 139–146 (2009). https://doi.org/10.1007/s10989-009-9175-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-009-9175-2

Keywords

Navigation