Skip to main content
Log in

CD22-Binding Peptides Derived from Anti-CD22 Ligand Blocking Antibodies Retain the Targeting and Cell Killing Properties of the Parent Antibodies and May Serve as a Drug Delivery Vehicle

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

CD22 is a B-cell specific membrane glycoprotein that mediates homotypic and heterotypic cell adhesion; it also regulates B-cell receptor (BCR)-mediated signals. Monoclonal antibodies (mAb) directed at the ligand binding domain of CD22 initiate CD22-mediated signal transduction and apoptosis in B-cell lymphomas (NHL). Amino acid analysis of the complimentary determining regions (CDRs) of six different anti-CD22 ligand blocking mAb revealed a high level of sequence conservation. The heavy chain CDRs 1, 2, and 3 are 85, 40, and 38% conserved, respectively; light chain CDRs 1, 2, and 3, are 95, 90 and 90% conserved, respectively. Based on these conserved sequences, five peptides were designed and synthesized. Only the sequence derived from heavy chain CDR2 (Peptide 5) demonstrated significant B-cell binding. Peptide 5 bound to both malignant and primary B-cells with very little T-cell binding. The affinity had a Km of 5 × 10−6 M. Peptide 5 mediated killing of several NHL cell lines to a degree similar to that of the parent mAb (HB22.7). Peptide 5’s loop structure was shown to be crucial for B-cell binding and ligand blocking. Mutational analysis revealed that most Peptide 5 amino acids were critical for B cell binding. Using a CD22 transfected COS cell line, we demonstrated CD22-specific binding and CD22 ligand blocking to a degree similar to HB22.7. Finally Peptide 5 was used as a vehicle to deliver a pro-apoptotic peptide into NHL cells. Peptide 5 was fused to a BH3 death domain-containing peptide which demonstrated more effective NHL cell killing than the parent peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al-Lazikani B, Lesk AM (1997) Chothia C: standard conformations for the canonical structures of immunoglobulins. J Mol Biol 273(4):927–948

    Article  PubMed  CAS  Google Scholar 

  • Atherton E, Sheppard RC (1989) Solid phase peptide synthesis. IRL Press, Oxford

    Google Scholar 

  • Doody GM, Justement LB, Delibrias CC, Matthews RJ, Lin J, Thomas ML, Fearon DT (1995) A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269(5221):242–244

    Article  PubMed  CAS  Google Scholar 

  • Dorken B, Moldenhauer G, Pezzutto A, Schwartz R, Feller A, Kiesel S, Nadler LM (1986) HD39 (B3), a B lineage-restricted antigen whose cell surface expression is limited to resting and activated human B lymphocytes. J Immunol 136(12):4470–4479

    PubMed  CAS  Google Scholar 

  • Engel P, Nojima Y, Rothstein D, Zhou LJ, Wilson GL, Kehrl JH, Tedder TF (1993) The same epitope on CD22 of B lymphocytes mediates the adhesion of erythrocytes, T and B lymphocytes, neutrophils and monocytes. J Immunol 150:4719–4732

    Google Scholar 

  • Engel P, Wagner N, Miller AS, Tedder TF (1995) Identification of the ligand-binding domains of CD22, a member of the immunoglobulin superfamily that uniquely binds a sialic acid-dependent ligand. J Exp Med 181(4):1581–1586

    Article  PubMed  CAS  Google Scholar 

  • Florence C, Florence R, Patrick M, Cedric B, Thierry C, Claude G, Jean-Claude M, Martinie P, Daniel P, Bernard P, Michael K, Roger L, Anthony R (2003) Biochemical. Biophys Res Commun 307:198–205

    Article  Google Scholar 

  • Gordon IL (1995) Scatchard analysis of fluorescent concanavalin. A binding to lymphocytes. Cytometry 20(3):238–244

    Article  PubMed  CAS  Google Scholar 

  • Haas KM, Sen S, Sanford IG, Miller AS, Poe JC, Tedder TF (2006) CD22 ligand binding regulates normal and malignant B lymphocyte survival in vivo. J Immunol 177(5):3063–3073

    PubMed  CAS  Google Scholar 

  • Heap CJ, Wang Y, Pinheiro TJT, Reading SA, Jennings KR, Dimmock NJ (2005) Analysis of a17-amino acid residue, virus neutralizing microantibody. J Gen Virol 86:1791–1800

    Article  PubMed  CAS  Google Scholar 

  • Hernandez J, Schoeder K, Blondelle SE, Pons FG, Lone YC, Simora A, Langlade-Demoyen P, Wilson DB, Zanetti M (2004) Antigenicity and immunogenicity of peptide analogues of a low affinity peptide of the human telomerase reverse transcriptase tumor antigen. Eur J Immunol 34(8):2331–2341

    Article  PubMed  CAS  Google Scholar 

  • Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34(2):595–598

    Article  PubMed  CAS  Google Scholar 

  • Kelm S, Pelz A, Schauer R, Filbin MT, Tang S, de Bellard ME, Schnaar RL, Mahoney JA, Hartnell A, Bradfield P et al (1994) Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr Biol 4(11):965–972

    Article  PubMed  CAS  Google Scholar 

  • King DS, Fields CG, Fields GB (1990) A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis. Int J Pept Protein Res 36(3):255–266

    PubMed  CAS  Google Scholar 

  • Law CL, Craxton A, Otipoby KL, Sidorenko SP, Klaus SJ, Clark EC (1994) Regulation of signalling through B-lymphocyte antigen receptors by cell–cell interaction molecules. Immunol Today 15:442

    Article  PubMed  CAS  Google Scholar 

  • Law CL, Aruffo A, Chandran KA, Doty RT, Clark EA (1995) Ig domains 1 and 2 of murine CD22 constitute the ligand-binding domain and bind multiple sialylated ligands expressed on B and T cells. J Immunol 155(7):3368–3376

    PubMed  CAS  Google Scholar 

  • Li R, Boehm AL, Miranda MB, Shangary S, Grandis JR, Johnson DE (2007) Targeting antiapoptotic Bcl-2 family members with cell-permeable BH3 peptides induces apoptosis signaling and death in head and neck squamous cell carcinoma cells. Neoplasia 9(10):801–811

    Article  PubMed  CAS  Google Scholar 

  • Matthews RJ, Bowne DB, Flores E, Thomas ML (1992) Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Mol Cell Biol 12(5):2396–2405

    PubMed  CAS  Google Scholar 

  • Moreau C, Cartron PF, Hunt A, Meflah K, Green DR, Evan G, Vallette FM, Juin P (2003) Minimal BH3 peptides promote cell death by antagonizing anti-apoptotic proteins. J Biol Chem 278(21):19426–19435 Epub 2003 Mar

    Article  PubMed  CAS  Google Scholar 

  • Plutzky J, Neel BG, Rosenberg RD, Eddy RL, Byers MG, Jani-Sait S, Shows TB (1992) Chromosomal localization of an SH2-containing tyrosine phosphatase (PTPN6). Genomics 13(3):869–872

    Article  PubMed  CAS  Google Scholar 

  • Powell LD, Sgroi D, Sjoberg ER, Stamenkovic I, Varki A (1993) Natural ligands of the B cell adhesion molecule CD22 beta carry N-linked oligosaccharides with alpha-2, 6-linked sialic acids that are required for recognition. J Biol Chem 268(10):7019–7027

    PubMed  CAS  Google Scholar 

  • Privé GG, Melnick A (2006) Specific peptides for the therapeutic targeting of oncogenes. Curr Opin Genet Dev 16(1):71–77 Epub 2005

    Article  PubMed  Google Scholar 

  • Qin W, Feng J, Zhou Lin Y-L, Shen B (2006) Fusion protein of CDR mimetic peptide with Fc inhibit TNF-alpha induced cytotoxicity. Mol Immunol 43(6):660–666

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Miller AS, Inaoki M, Bock CB, Jansen PJ, Tang ML, Tedder TF (1996) CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity 5(6):551–562

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Tuscano JM, Inaoki M, Tedder TF (1998) CD22 negatively and positively regulates signal transduction through the B lymphocyte antigen receptor. Semin Immunol 10(4):287–297

    Article  PubMed  CAS  Google Scholar 

  • Sgroi D, Varki A, Braesch-Andersen S, Stamenkovic I (1993) CD22, a B cell-specific immunoglobulin superfamily member, is a sialic acid-binding lectin. J Biol Chem 268(10):7011–7018

    PubMed  CAS  Google Scholar 

  • Sharabi A, Zinger H, Zborowsky M, Sthoeger ZM, Mozes E (2006) A peptide based on the complementarity-determining region 1 of an autoantibody ameliorates lupus by up-regulating CD4 + CD25 + cells and TGF-beta. Proc Natl Acad Sci USA 103(23):8810–8815. Epub 2006 May

    Article  PubMed  CAS  Google Scholar 

  • Shen SH, Bastien L, Posner BI, Chretien P (1991) A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases. Nature 352(6337):736–739

    Article  PubMed  CAS  Google Scholar 

  • Siminovitch KA, Neel BG (1998) Regulation of B cell signal transduction by SH2-containing protein-tyrosine phosphatases. Semin Immunol 10(4):329–347

    Article  PubMed  CAS  Google Scholar 

  • Stamenkovic I, Seed B (1990) The B-cell antigen CD22 mediates monocyte and erythrocyte adhesion. Nature 345(6270):74–77

    Article  PubMed  CAS  Google Scholar 

  • Stamenkovic I, Sgroi D, Aruffo A, Sy MS, Anderson T (1991) The B lymphocyte adhesion molecule CD22 interacts with leukocyte common antigen CD45RO on T cells and alpha 2-6 sialyltransferase, CD75, on B cells. Cell 66(6):1133–1144

    Article  PubMed  CAS  Google Scholar 

  • Stewart JM, Young JD (1984) Solid phase peptide synthesis. Pierce Chemical CO., Rockford

    Google Scholar 

  • Takasaki W, Kajino Y, Kajino K, Murali R, Greene MI (1997) Structure-based design and characterization of exocyclic peptidomimetics that inhibit TNF alpha binding to its receptor. Nat Biotechnol 15(12):1266–1270

    Article  PubMed  CAS  Google Scholar 

  • Tamir I, Dal Porto JM, Cambier JC (2000) Cytoplasmic protein tyrosine phosphatases SHP-1 and SHP-2: regulators of B cell signal transduction. Curr Opin Immunol 12(3):307–315

    Article  PubMed  CAS  Google Scholar 

  • Tedder TF, Tuscano J, Sato S, Kehrl JH (1997) CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annu Rev Immunol 15:481–504

    Article  PubMed  CAS  Google Scholar 

  • Tooze RM, Doody GM, Fearon DT (1997) Counterregulation by the coreceptors CD19 and CD22 of MAP kinase activation by membrane immunoglobulin. Immunity 7(1):59–67

    Article  PubMed  CAS  Google Scholar 

  • Torres RM, Law CL, Santos-Argumedo L, Kirkham PA, Grabstein K, Parkhouse RM, Clark EA (1992) Identification and characterization of the murine homologue of CD22, a B lymphocyte-restricted adhesion molecule. J Immunol 149(8):2641–2649

    PubMed  CAS  Google Scholar 

  • Tuscano J, Engel P, Tedder TF, Kehrl JH (1996) Engagement of the adhesion receptor CD22 triggers a potent stimulatory signal for B cells and blocking CD22/CD22L interactions impairs T-cell proliferation. Blood 87(11):4723–4730

    PubMed  CAS  Google Scholar 

  • Tuscano JM, Riva A, Toscano SN, Tedder TF, Kehrl JH (1999) CD22 cross-linking generates B-cell antigen receptor-independent signals that activate the JNK/SAPK signaling cascade. Blood 94(4):1382–1392

    PubMed  CAS  Google Scholar 

  • Tuscano JM, O’Donnell RT, Miers LA, Kroger LA, Kukis DL, Lamborn KR, Tedder TF, DeNardo GL (2003) Anti-CD22 ligand-blocking antibody HB22.7 has independent lymphomacidal properties and augments the efficacy of 90Y-DOTA-peptide-Lym-1 in lymphoma xenografts. Blood 101(9):3641–3647

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Leukemia and Lymphoma Society Translational Research Award, the Schwedler Foundation and DOD grant # 21262678.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Tuscano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearson, D., O’Donnell, R.T., Cerejo, M. et al. CD22-Binding Peptides Derived from Anti-CD22 Ligand Blocking Antibodies Retain the Targeting and Cell Killing Properties of the Parent Antibodies and May Serve as a Drug Delivery Vehicle. Int J Pept Res Ther 14, 237–246 (2008). https://doi.org/10.1007/s10989-008-9138-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-008-9138-z

Keywords

Navigation