Skip to main content

Advertisement

Log in

Peptide nucleic acids as epigenetic inhibitors of HIV-1

  • Published:
Letters in Peptide Science Aims and scope Submit manuscript

Abstract

The advent of highly active antiretroviral therapy (HAART) was once perceived to havetransformed deadly HIV/AIDS into a treatable, chronic infectious disease. However, mountingevidence now suggests that the prevalence of multi-drug resistant HIV (MDR-HIV) infection issteadily rising among newly infected individuals in the HAART-experienced countries, raising aconcern for a future outbreak of MDR-HIV/AIDS. Our global fight against AIDS must include sustainedeffort to search and discover a new therapeutic modality for HIV infection. Of plausible viraltargets explored to date, HIV gene-targeting approach has not yet seen a considerable success invivo. The pursuit of anti-HIV gene intervention should include the identification of critical genetargets as well as the optimization of biomolecules that can effectively interact with theintended targets. Using unmodified peptide nucleic acids (PNA) as a biomolecular tool, we discovereda potentially critical HIV gene segment within gag-polencoding gene. Antisense PNA targetingthis specific region effectively disrupted a translation of HIV gag-polmRNA, abolishing thevirion production from chronically HIV-infected cells. This exemplifies the possibility that epigenic HIV inhibitors may be developed in the coming years, if emerging novel technologies permitsufficient and stable in vivo delivery of PNA or other similarly effective biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Masur, H., Michelis, M.A., Greene, J.B. et al., An out-break of community-acquired Pneumocystis carinii pneumo-nia: Initial manifestation of cellular immune dysfunction. N. Engl. J. Med., 305 (1981) 1431.

    CAS  PubMed  Google Scholar 

  2. Gottlieb, M.S., Schroff, R., Schanker, H.M. et al., Pneumo-cystis carinii pneumonia and mucosal candidiasis in previ-ously healthy homosexual men: Evidence of a new acquired cellular immunodeficiency. N. Engl. J. Med., 305 (1981) 1425.

    CAS  PubMed  Google Scholar 

  3. Division of HIV/AIDS Prevention National Center for HIV, STD, and TB Prevention, Centers for Disease Control and Prevention. HIV/AIDS Surveillance Report. Vol. 10. U.S. Department of Health and Human Services, Public Health Service, Atlanta, 1998, 1.

    Google Scholar 

  4. Aalen, O.O., Farewell, V.T., De Angelis, D., Day, N.E. and Gill, O.N., New therapy explains the fall in AIDS incidence with a substantial rise in number of persons on treatment expected. AIDS, 13 (1999) 103.

    CAS  PubMed  Google Scholar 

  5. Boden, D., Hurley, A., Zhang, L. et al., HIV-1 drug resistance in newly infected individuals. JAMA, 282 (1999) 1135.

    Article  CAS  PubMed  Google Scholar 

  6. Little, S.J., Daar, E.S., D'Aquila, R.T. et al., Reduced antiret-roviral drug susceptibility among patients with primary HIV infection. JAMA, 282 (1999) 1142.

    Article  CAS  PubMed  Google Scholar 

  7. UK Collaborative Group on Monitoring the Transmission of HIV Drug Resistance. Analysis of prevalence of HIV-1 drug resistance in primary infections in the United Kingdom. BMJ, 322 (2001) 1087.

    Google Scholar 

  8. Larder, B.A., Hertogs, K., Bloor, S. et al., Tipranavir inhibits broadly protease inhibitor-resistant HIV-1 clinical samples. AIDS, 14 (2000) 1943.

    CAS  PubMed  Google Scholar 

  9. For a detailed review on HIV-1 and its replication cycle see Human immunodeficiency viruses and their replication. In: D.M. Knipe and P.M. Howley (Eds.) Fields Virology. Lippincott Williams and Wilkins, Philadelphia, 2001.

  10. Berger, E.A., Murphy, P.M. and Farber, J.M., Chemokine receptors as HIV-1 coreceptors: Roles in viral entry, tropism, and disease. Annu. Rev. Immunol., 17 (1999) 657.

    Article  CAS  PubMed  Google Scholar 

  11. Kaplan, A.H., Manchester, M. and Swanstrom, R., The activ-ity of the protease of human immunodeficiency virus type 1 is initiated at the membrane of infected cells before the release of viral proteins and is required for release to occur with maximum efficiency. J. Virol., 68 (1994) 6782.

    CAS  PubMed  Google Scholar 

  12. Mitsuya, H., Weinhold, K.J., Furman, P.A. et al., 3-Azido-3-deoxythymidine (BW A509U): An antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc. Natl. Acad. Sci. USA, 82 (1985) 7096.

    CAS  PubMed  Google Scholar 

  13. Yarchoan, R., Klecker, R.W., Weinhold, K.J. et al., Adminis-tration of 3-azido-3-deoxythymidine, an inhibitor of HTLV-III/ LAV replication, to patients with AIDS or AIDS-related complex. Lancet, 1 (1986) 575.

    CAS  PubMed  Google Scholar 

  14. Mitsuya, H., Jarrett, R.F., Matsukura, M. et al., Long-term inhibition of human T-lymphotropic virus type.282 III/lymphadenopathy-associated virus (human immunodefi-ciency virus) DNA synthesis and RNA expression in T cells protected by 2, 3-dideoxynucleosides in vitro. Proc. Natl. Acad. Sci. USA, 84 (1987) 2033.

    CAS  PubMed  Google Scholar 

  15. Yarchoan, R., Mitsuya, H., Thomas, R.V. et al., In vivoactivity against HIV and favorable toxicity profile of 2, 3-dideoxyinosine. Science, 245 (1989) 412.

    CAS  PubMed  Google Scholar 

  16. Oberlin, E., Amara, A., Bachelerie, F. et al., The CXC chemokine SDF-1 is the ligand for LESTR/fusin and pre-vents infection by T-cell-line-adapted HIV-1 (published er-ratum appears in Nature, 21 November 1996, 384 (6606) 288), Nature, 382 (1996) 833.

    Article  CAS  PubMed  Google Scholar 

  17. Doranz, B.J., Grovit-Ferbas, K., Sharron, M.P. et al., A small-molecule inhibitor directed against the chemokine re-ceptor CXCR4 prevents its use as an HIV-1 coreceptor. J. Exp. Med., 186 (1997) 1395.

    Article  CAS  PubMed  Google Scholar 

  18. Murakami, T., Nakajima, T., Koyanagi, Y. et al., A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. J. Exp. Med., 186 (1997) 1389.

    Article  CAS  PubMed  Google Scholar 

  19. Simmons, G., Clapham, P.R., Picard, L. et al., Potent inhib-ition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science, 276 (1997) 276.

    Article  CAS  PubMed  Google Scholar 

  20. Donzella, G.A., Schols, D., Lin, S.W. et al., AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat. Med. (1998) 472.

  21. Gong, W., Howard, O.M., Turpin, J.A. et al., Mono-cyte chemotactic protein-2 activates CCR5 and blocks CD4/CCR5-mediated HIV-1 entry/replication. J. Biol. Chem., 273 (1998) 4289.

    CAS  PubMed  Google Scholar 

  22. Kilby, J.M., Hopkins, S., Venetta, T.M. et al., Potent sup-pression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat. Med., 4 (1998) 1302.

    Article  CAS  PubMed  Google Scholar 

  23. Pilcher, C.D., Eron Jr., J.J., Ngo, L. et al., Prolonged ther-apy with the fusion inhibitor T-20 in combination with oral antiretroviral agents in an HIV-infected individual. AIDS, 13 (1999) 2171.

    Article  CAS  PubMed  Google Scholar 

  24. Puras Lutzke, R.A., Eppens, N.A., Weber, P.A., Houghten, R.A. and Plasterk, R.H., Identification of a hexapeptide inhibitor of the human immunodeficiency virus integrase pro-tein by using a combinatorial chemical library. Proc. Natl. Acad. Sci. USA, 92 (1995) 11456.

    CAS  PubMed  Google Scholar 

  25. Eich, E., Pertz, H., Kaloga, M. et al., (-)-Arctigenin as a lead structure for inhibitors of human immunodeficiency virus type-1 integrase. J. Med. Chem., 39 (1996) 86.

    Article  CAS  PubMed  Google Scholar 

  26. Mazumder, A., Neamati, N., Ojwang, J.O., Sunder, S., Rando, R.F. and Pommier, Y., Inhibition of the human im-munodeficiency virus type 1 integrase by guanosine quartet structures. Biochemistry, 35 (1996) 13762.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, H., Neamati, N., Hong, H. et al., Coumarin-based inhibitors of HIV integrase. J. Med. Chem., 40 (1997) 242.

    CAS  PubMed  Google Scholar 

  28. Zhao, H., Neamati, N., Sunder, S. et al., Hydrazide-containing inhibitors of HIV-1 integrase. J. Med. Chem., 40 (1997) 937.

    CAS  PubMed  Google Scholar 

  29. Artico, M., Di Santo, R., Costi, R. et al., Geometrically and conformationally restrained cinnamoyl compounds as inhib-itors of HIV-1 integrase: synthesis, biological evaluation, and molecular modeling. J. Med. Chem., 41 (1998) 3948.

    Article  CAS  PubMed  Google Scholar 

  30. Farnet, C.M., Wang, B., Hansen, M. et al., Human immun-odeficiency virus type 1 cDNA integration: new aromatic hydroxylated inhibitors and studies of the inhibition mech-anism. Antimicrob. Agents Chemother., 42 (1998) 2245.

    CAS  Google Scholar 

  31. Neamati, N., Hong, H., Owen, J.M. et al., Salicylhydrazine-containing inhibitors of HIV-1 integrase: Implication for a selective chelation in the integrase active site. J. Med. Chem., 41 (1998) 3202.

    Article  CAS  PubMed  Google Scholar 

  32. Molteni, V., Rhodes, D., Rubins, K., Hansen, M., Bushman, F.D. and Siegel, J.S., A new class of HIV-1 integrase inhibit-ors: The 3, 3, 3, 3-tetramethyl-1, 1-spirobi(indan)-5, 5, 6, 6-tetrol family. J. Med. Chem., 43 (2000) 2031.

    Article  CAS  PubMed  Google Scholar 

  33. Reddy, M.V., Rao, M.R., Rhodes, D. et al., Lamellarin al-pha 20-sulfate, an inhibitor of HIV-1 integrase active against HIV-1 virus in cell culture. J. Med. Chem., 42 (1999) 1901.

    CAS  PubMed  Google Scholar 

  34. Hazuda, D.J., Felock, P., Witmer, M. et al., Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science, 287 (2000) 646.

    Article  CAS  PubMed  Google Scholar 

  35. Rice, W.G., Schaeffer, C.A., Harten, B. et al., Inhibi-tion of HIV-1 infectivity by zinc-ejecting aromatic C-nitroso compounds. Nature, 361 (1993) 473.

    Article  CAS  PubMed  Google Scholar 

  36. McDonnell, N.B., De Guzman, R.N., Rice, W.G., Turpin, J.A. and Summers, M.F., Zinc ejection as a new rationale for the use of cystamine and related disulfide-containing antiviral agents in the treatment of AIDS. J. Med. Chem., 40 (1997) 1969.

    Article  CAS  PubMed  Google Scholar 

  37. Rice, W.G., Baker, D.C., Schaeffer, C.A. et al., Inhibition of multiple phases of human immunodeficiency virus type 1 replication by a dithiane compound that attacks the conserved zinc fingers of retroviral nucleocapsid proteins. Antimicrob. Agents Chemother., 41 (1997) 419.

    CAS  PubMed  Google Scholar 

  38. Haubrich, R.H., Flexner, C., Lederman, M.M. et al., A ran-domized trial of the activity and safety of Ro 24-7429 (Tat antagonist) versus nucleoside for human immunodeficiency virus infection. The AIDS Clinical Trials Group 213 Team. J. Infect. Dis., 172 (1995) 1246.

    CAS  PubMed  Google Scholar 

  39. Dropulic, B. and Jeang, K.T., Gene therapy for human im-munodeficiency virus infection: Genetic antiviral strategies and targets for intervention. Hum. Gene Ther., 5 (1994) 927.

    CAS  PubMed  Google Scholar 

  40. Morgan, R.A., Genetic strategies to inhibit HIV. Mol. Med. Today, 5 (1999) 454.

    CAS  PubMed  Google Scholar 

  41. Dornburg, R. and Pomerantz, R.J., HIV-1 gene therapy: Promise for the future. Adv. Pharmacol., 49 (2000) 229.

    CAS  PubMed  Google Scholar 

  42. Zamecnik, P.C., Goodchild, J., Taguchi, Y. and Sarin, P.S., Inhibition of replication and expression of human T-cell lymphotropic virus type III in cultured cells by exogen-ous synthetic oligonucleotides complementary to viral RNA. Proc. Natl. Acad. Sci. USA, 83 (1986) 4143.

    CAS  PubMed  Google Scholar 

  43. Matsukura, M., Zon, G., Shinozuka, K. et al., Regulation of viral expression of human immunodeficiency virus in vitroby an antisense phosphorothioate oligodeoxynucleotide against rev (art/trs) in chronically infected cells. Proc. Natl. Acad. Sci. USA, 86 (1989) 4244.

    CAS  PubMed  Google Scholar 

  44. Agrawal, S., Ikeuchi, T., Sun, D. et al., Inhibition of human immunodeficiency virus in early infected and chronically infected cells by antisense oligodeoxynucleotides and their phosphorothioate analogues. Proc. Natl. Acad. Sci. USA, 86 (1989) 7790.

    CAS  PubMed  Google Scholar 

  45. Kinchington, D., Galpin, S., Jaroszewski, J.W., Ghosh, K., Subasinghe, C. and Cohen, J.S. A comparison of gag, pol and rev antisense oligodeoxynucleotides as inhibitors of HIV-1. Antiviral Res., 17 (1992) 53.

    Article  CAS  PubMed  Google Scholar 

  46. Lisziewicz, J., Sun, D., Klotman, M., Agrawal, S., Zamec-nik, P. and Gallo, R., Specific inhibition of human immun-odeficiency virus type 1 replication by antisense oligonuc-leotides: An in vitromodel for treatment. Proc. Natl. Acad. Sci. USA, 89 (1992) 11209.

    CAS  PubMed  Google Scholar 

  47. Lisziewicz, J., Sun, D., Metelev, V., Zamecnik, P., Gallo, R.C. and Agrawal, S., Long-term treatment of human im-munodeficiency virus-infected cells with antisense oligonuc-.283 leotide phosphorothioates. Proc. Natl. Acad. Sci. USA, 90 (1993) 3860.

    CAS  PubMed  Google Scholar 

  48. Lisziewicz, J., Sun, D., Weichold, F.F. et al., Antisense oli-godeoxynucleotide phosphorothioate complementary to Gag mRNA blocks replication of human immunodeficiency virus type 1 in human peripheral blood cells. Proc. Natl. Acad. Sci. USA, 91 (1994) 7942.

    CAS  PubMed  Google Scholar 

  49. Anazodo, M.I., Wainberg, M.A., Friesen, A.D. and Wright, J.A., Sequence-specific inhibition of gene expression by a novel antisense oligodeoxynucleotide phosphorothioate dir-ected against a nonregulatory region of the human immun-odeficiency virus type 1 genome. J. Virol., 69 (1995) 1794.

    CAS  PubMed  Google Scholar 

  50. Lisziewicz, J., Sun, D., Lisziewicz, A. and Gallo, R.C., An-titat gene therapy: A candidate for late-stage AIDS patients. Gene. Ther., 2 (1995) 218.

    CAS  PubMed  Google Scholar 

  51. Kim, S.G., Hatta, T., Tsukahara, S. et al., Antiviral effect of phosphorothioate oligodeoxyribonucleotides complementary to human immunodeficiency virus. Bioorg. Med. Chem., 3 (1995) 49.

    CAS  PubMed  Google Scholar 

  52. Weichold, F.F., Lisziewicz, J., Zeman, R.A. et al., Antis-ense phosphorothioate oligodeoxynucleotides alter HIV type 1 replication in cultured human macrophages and peripheral blood mononuclear cells. AIDS Res. Hum. Retroviruses, 11 (1995) 863.

    CAS  PubMed  Google Scholar 

  53. Anazodo, M.I., Duta, E., Friesen, A.D. and Wright, J.A., Relative levels of inhibition of p24 gene expression by dif-ferent 20-mer antisense oligonucleotide sequences targeting nucleotides +1129 to +1268 of the HIV-1 gag genome: An analysis of mechanism. Biochem. Biophys. Res. Commun., 229 (1996) 305.

    Article  CAS  PubMed  Google Scholar 

  54. Yamaguchi, K., Papp, B., Zhang, D., Ali, A.N., Agrawal, S. and Byrn, R.A., The multiple inhibitory mechanisms of GEM 91, a gag antisense phosphorothioate oligonucleotide, for human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses, 13 (1997) 545.

    CAS  PubMed  Google Scholar 

  55. Clinical trial results of GEM91 show activity against advance HIV. AIDS Patient Care STDS, 11 (1997) 290.

  56. Stoddart, C.A., Rabin, L., Hincenbergs, M. et al., Inhibition of human immunodeficiency virus type 1 infection in SCID-hu Thy/Liv mice by the G-quartet-forming oligonucleotide, ISIS 5320. Antimicrob. Agents Chemother., 42 (1998) 2113.

    CAS  PubMed  Google Scholar 

  57. Temsamani, J., Roskey, A., Chaix, C. and Agrawal, S., In vivometabolic profile of a phosphorothioate oligodeoxyribo-nucleotide. Antisense Nucl. Acids Drug Dev., 7 (1997) 159.

    CAS  Google Scholar 

  58. Baker, B.F. and Monia, B.P., Novel mechanisms for antisense-mediated regulation of gene expression. Biochim. Biophys. Acta, 1489 (1999) 3.

    CAS  PubMed  Google Scholar 

  59. Wang, S. and Dolnick, B.J., Quantitative evaluation of intra-cellular sense: Antisense RNA hybrid duplexes. Nucl. Acids Res., 21 (1993) 4383.

    CAS  PubMed  Google Scholar 

  60. Too, C.K., Rapid induction of Jak2 and Sp1 in T cells by phosphorothioate oligonucleotides. Antisense Nucl. Acid Drug Dev., 8 (1998) 87.

    CAS  Google Scholar 

  61. Mansky, L.M. and Temin, H.M., Lower in vivomutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J. Virol., 69 (1995) 5087.

    CAS  PubMed  Google Scholar 

  62. Patel, P.H. and Preston, B.D., Marked infidelity of human immunodeficiency virus type 1 reverse transcriptase at RNA and DNA template ends. Proc. Natl. Acad. Sci. USA, 91 (1994) 549.

    CAS  PubMed  Google Scholar 

  63. Preston, B.D., Poiesz, B.J. and Loeb, L.A., Fidelity of HIV-1 reverse transcriptase. Science, 242 (1988) 1168.

    CAS  PubMed  Google Scholar 

  64. Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M. and Ho, D.D., HIV-1 dynamics in vivo: Virion clear-ance rate, infected cell life-span, and viral generation time. Science, 271 (1996) 1582.

    CAS  PubMed  Google Scholar 

  65. Goodenow, M., Huet, T., Saurin, W., Kwok, S., Sninsky, J. and Wain-Hobson, S., HIV-1 isolates are rapidly evolving quasispecies: Evidence for viral mixtures and preferred nuc-leotide substitutions. J. Acquir. Immune. Defic. Syndr., 2 (1989) 344.

    CAS  PubMed  Google Scholar 

  66. Hermankova, M., Ray, S.C., Ruff, C. et al., HIV-1 drug resistance profiles in children and adults with viral load of <50 copies ml –1receiving combination therapy. JAMA, 286 (2001) 196.

    Article  CAS  PubMed  Google Scholar 

  67. Nielsen, P.E., Egholm, M., Berg, R.H. and Buchardt, O., Sequence-selective recognition of DNA by strand displace-ment with a thymine-substituted polyamide. Science, 254 (1991) 1497.

    CAS  PubMed  Google Scholar 

  68. Hanvey, J.C., Peffer, N.J., Bisi, J.E. et al., Antisense and anti-gene properties of peptide nucleic acids. Science, 258 (1992) 1481.

    CAS  PubMed  Google Scholar 

  69. Egholm, M., Buchardt, O., Christensen, L. et al., PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules (see comments). Nature, 365 (1993) 566.

    Article  CAS  PubMed  Google Scholar 

  70. Wittung, P., Nielsen, P.E., Buchardt, O., Egholm, M. and Norden, B., DNA-like double helix formed by peptide nucleic acid. Nature, 368 (1994) 561.

    Article  CAS  PubMed  Google Scholar 

  71. Demidov, V.V., Potaman, V.N., Frank-Kamenetskii, M.D. et al., Stability of peptide nucleic acids in human serum and cellular extracts. Biochem. Pharmacol., 48 (1994) 1310.

    Article  CAS  PubMed  Google Scholar 

  72. Egholm, M., Buchardt, O., Nielsen, P.E. and Berg, R.H., Peptide nucleic acids (PNA). Oligonucleotide analogues with an achiral peptide backbone. J. Am. Chem. Soc., 114 (1992) 1895.

    CAS  Google Scholar 

  73. Igloi, G.L., Variability in the stability of DNA-peptide nuc-leic acid (PNA) single-base mismatched duplexes: Real-time hybridization during affinity electrophoresis in PNA-containing gels. Proc. Natl. Acad. Sci. USA, 95 (1998) 8562.

    Article  CAS  PubMed  Google Scholar 

  74. Wittung, P., Kajanus, J., Edwards, K. et al., Phospholipid membrane permeability of peptide nucleic acid (corrected and republished with original paging, article originally prin-ted in FEBS Lett., 22 May 1995, 365(1) 27-9). FEBS Lett., 375 (1995) 27.

    CAS  PubMed  Google Scholar 

  75. Noble, S.A., Bonham, M.A., Bisi, J.E. et al., Impact of bio-physical parameters on the biological assessment of peptide nucleic acids, antisense inhibitors of gene expression. Drug Develop. Res., 34 (1995) 184.

    CAS  Google Scholar 

  76. Chinnery, P.F., Taylor, R.W., Diekert, K., Lill, R., Turnbull, D.M. and Lightowlers, R.N., Peptide nucleic acid delivery to human mitochondria. Gene Ther., 6 (1999) 1919.

    Article  CAS  PubMed  Google Scholar 

  77. Gray, G.D., Basu, S. and Wickstrom, E., Transformed and immortalized cellular uptake of oligodeoxynucleoside phos-phorothioates, 3-alkylamino oligodeoxynucleotides, 2-O-methyl oligoribonucleotides, oligodeoxynucleoside methyl-phosphonates, and peptide nucleic acids. Biochem. Phar-macol., 53 (1997) 1465.

    CAS  Google Scholar 

  78. Sei, S., Yang, Q.E., O'Neill, D., Yoshimura, K., Nagashima, K. and Mitsuya, H., Identification of a key target sequence to block human immunodeficiency virus type 1 replication within the gag-pol transframe domain. J. Virol., 74 (2000) 4621.

    Article  CAS  PubMed  Google Scholar 

  79. Fraser, G.L., Holmgren, J., Clarke, P.B. and Wahlestedt, C., Antisense inhibition of delta-opioid receptor gene function.284 in vivoby peptide nucleic acids. Mol. Pharmacol., 57 (2000) 725.

    CAS  PubMed  Google Scholar 

  80. Tyler, B.M., Jansen, K., McCormick, D.J. et al., Peptide nucleic acids targeted to the neurotensin receptor and ad-ministered i.p. cross the blood-brain barrier and specifically reduce gene expression. Proc. Natl. Acad. Sci. USA, 96 (1999) 7053.

    Article  CAS  PubMed  Google Scholar 

  81. Bonham, M.A., Brown, S., Boyd, A.L. et al., An assessment of the antisense properties of RNase H-competent and steric-blocking oligomers. Nucl. Acids Res. 23 (1995) 1197.

    CAS  PubMed  Google Scholar 

  82. Shammas, M.A., Simmons, C.G., Corey, D.R. and Shmook-ler Reis, R.J., Telomerase inhibition by peptide nucleic acids reverses 'immortality' of transformed human cells. Oncogene, 18 (1999) 6191.

    Article  CAS  PubMed  Google Scholar 

  83. Wang, G., Xu, X., Pace, B. et al., Peptide nucleic acid (PNA) binding-mediated induction of human gamma-globin gene expression. Nucl. Acids Res., 27 (1996) 2806.

    Google Scholar 

  84. Mayhood, T., Kaushik, N., Pandey, P.K., Kashanchi, F., Deng, L. and Pandey, V.N., Inhibition of Tat-mediated trans-activation of HIV-1 LTR transcription by polyamide nucleic acid targeted to TAR hairpin element. Biochemistry, 39 (2000) 11532.

    Article  CAS  PubMed  Google Scholar 

  85. Gottlinger, H.G., Dorfman, T., Sodroski, J.G. and Haseltine, W.A., Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc. Natl. Acad. Sci. USA, 88 (1991) 3195.

    CAS  PubMed  Google Scholar 

  86. Huang, M., Orenstein, J.M., Martin, M.A. and Freed, E.O., p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J. Virol., 69 (1995) 6810.

    CAS  PubMed  Google Scholar 

  87. Yu, X.F., Dawson, L., Tian, C.J., Flexner, C. and Dettenhofer, M., Mutations of the human immunodeficiency virus type 1 p6Gag domain result in reduced retention of Pol proteins during virus assembly. J. Virol., 72 (1998) 3412.

    CAS  PubMed  Google Scholar 

  88. Jacks, T. and Varmus, H.E., Expression of the Rous sar-coma virus pol gene by ribosomal frameshifting. Science, 230 (1985) 1237.

    CAS  PubMed  Google Scholar 

  89. Hizi, A., Henderson, L.E., Copeland, T.D., Sowder, R.C., Hixson, C.V. and Oroszlan, S., Characterization of mouse mammary tumor virus gag-pro gene products and the ri-bosomal frameshift site by protein sequencing. Proc. Natl. Acad. Sci. USA, 84 (1987) 7041.

    CAS  PubMed  Google Scholar 

  90. Jacks, T., Townsley, K., Varmus, H.E. and Majors, J., Two efficient ribosomal frameshifting events are required for synthesis of mouse mammary tumor virus gag-related polyproteins. Proc. Natl. Acad. Sci. USA, 84 (1987) 4298.

    CAS  PubMed  Google Scholar 

  91. Mador, N., Panet, A. and Honigman, A., Translation of gag, pro, and pol gene products of human T-cell leukemia virus type 2. J. Virol., 63 (1989) 2400.

    CAS  PubMed  Google Scholar 

  92. Nam, S.H., Copeland, T.D., Hatanaka, M. and Oroszlan, S., Characterization of ribosomal frameshifting for expression of pol gene products of human T-cell leukemia virus type I. J. Virol., 67 (1993) 196.

    CAS  PubMed  Google Scholar 

  93. Jacks, T., Power, M.D., Masiarz, F.R., Luciw, P.A., Barr, P.J. and Varmus, H.E., Characterization of ribosomal frameshift-ing in HIV-1 gag-pol expression. Nature, 331 (1988) 280.

    Article  CAS  PubMed  Google Scholar 

  94. Wilson, W., Braddock, M., Adams, S.E., Rathjen, P.D., Kingsman, S.M. and Kingsman, A.J., HIV expression strategies: Ribosomal frameshifting is directed by a short sequence in both mammalian and yeast systems. Cell, 55 (1988) 1159.

    Article  CAS  PubMed  Google Scholar 

  95. Kozal, M.J., Shah, N., Shen, N. et al., Extensive poly-morphisms observed in HIV-1 clade B protease gene using high-density oligonucleotide arrays. Nat. Med., 2 (1996) 753.

    Article  CAS  PubMed  Google Scholar 

  96. Lech, W.J., Wang, G., Yang, Y.L. et al., In vivosequence diversity of the protease of human immunodeficiency virus type 1: Presence of protease inhibitor-resistant variants in untreated subjects. J. Virol., 70 (1996) 2038.

    CAS  PubMed  Google Scholar 

  97. Barrie, K.A., Perez, E.E., Lamers, S.L. et al., Natural variation in HIV-1 protease, Gag p7 and p6, and protease cleavage sites within gag/pol polyproteins: Amino acid sub-stitutions in the absence of protease inhibitors in mothers and children infected by human immunodeficiency virus type 1. Virology, 219 (1996) 407.

    Article  CAS  PubMed  Google Scholar 

  98. Checroune, F., Yao, X.J., Gottlinger, H.G., Bergeron, D. and Cohen, E.A., Incorporation of Vpr into human immunodefi-ciency virus type 1: role of conserved regions within the P6 domain of Pr55gag. J. Acquir. Immune. Defic. Syndr. Hum. Retrovirol., 10 (1995) 1.

    CAS  PubMed  Google Scholar 

  99. Lu, Y.L., Bennett, R.P., Wills, J.W., Gorelick, R. and Ratner, L., A leucine triplet repeat sequence (LXX)4 in p6gag is im-portant for Vpr incorporation into human immunodeficiency virus type 1 particles. J. Virol., 69 (1995) 6873.

    CAS  PubMed  Google Scholar 

  100. Kondo, E. and Gottlinger, H.G., A conserved LXXLF se-quence is the major determinant in p6gag required for the incorporation of human immunodeficiency virus type 1 Vpr. J. Virol., 70 (1996) 159.

    CAS  PubMed  Google Scholar 

  101. Yoshimura, K., Kato, R., Yusa, K. et al., JE-2147: A dipeptide protease inhibitor (PI) that potently inhibits multi-PI-resistant HIV-1. Proc. Natl. Acad. Sci. USA, 96 (1999) 8675.

    Article  CAS  PubMed  Google Scholar 

  102. Pearl, L.H. and Taylor, W.R., A structural model for the retroviral proteases. Nature, 329 (1987) 351.

    Article  CAS  PubMed  Google Scholar 

  103. Wlodawer, A., Miller, M., Jaskolski, M. et al., Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science, 245 (1989) 616.

    CAS  PubMed  Google Scholar 

  104. Strickler, J.E., Gorniak, J., Dayton, B. et al., Characterization and autoprocessing of precursor and mature forms of human immunodeficiency virus type 1 (HIV 1) protease purified from Escherichia coli. Proteins, 6 (1989) 139.

    Article  CAS  PubMed  Google Scholar 

  105. Rose, J.R., Salto, R. and Craik, C.S., Regulation of autopro-teolysis of the HIV-1 and HIV-2 proteases with engineered amino acid substitutions. J. Biol. Chem., 268 (1993) 11939.

    CAS  PubMed  Google Scholar 

  106. Park, J. and Morrow, C.D., The nonmyristylated Pr160gag-pol polyprotein of human immunodeficiency virus type 1 interacts with Pr55gag and is incorporated into viruslike particles. J. Virol., 66 (1992) 6304.

    CAS  PubMed  Google Scholar 

  107. Smith, A.J., Srinivasakumar, N., Hammarskjold, M.L. abd Rekosh, D., Requirements for incorporation of Pr160gag-pol from human immunodeficiency virus type 1 into virus-like particles. J. Virol., 67 (1993) 2266.

    CAS  PubMed  Google Scholar 

  108. Lee, Y.M. and Yu, X.F., Identification and characterization of virus assembly intermediate complexes in HIV-1-infected CD4+ T cells. Virology, 243 (1998) 78.

    Article  CAS  PubMed  Google Scholar 

  109. Lee, Y.M., Tian, C.J. and Yu, X.F., A bipartite membrane-binding signal in the human immunodeficiency virus type 1 matrix protein is required for the proteolytic processing of Gag precursors in a cell type-dependent manner. J. Virol., 72 (1998) 9061.

    CAS  PubMed  Google Scholar 

  110. Rhee, S.S. and Hunter, E., Myristylation is required for intra-cellular transpo, rt but not for assembly of D-type retrovirus capsids. J. Virol., 61 (1987) 1045.

    CAS  PubMed  Google Scholar 

  111. Gottlinger, H.G., Sodroski, J.G. and Haseltine, W.A., Role of capsid precursor processing and myristoylation in morpho-genesis and infectivity of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA, 86 (1999) 5781. expression. Nucl. Acids Res., 27 (1999) 2806.

    Google Scholar 

  112. Bryant, M. and Ratner, L., Myristoylation-dependent replica-tion and assembly of human immunodeficiency virus 1. Proc. Natl. Acad. Sci. USA, 87 (1990) 523.

    CAS  PubMed  Google Scholar 

  113. Park, J. and Morrow, C.D., Overexpression of the gag-pol precursor from human immunodeficiency virus type 1 proviral genomes results in efficient proteolytic processing in the absence of virion production. J. Virol., 65 (1991) 5111.

    CAS  PubMed  Google Scholar 

  114. Karacostas, V., Wolffe, E.J., Nagashima, K., Gonda, M.A. and Moss, B., Overexpression of the HIV-1 gag-pol polypro-tein results in intracellular activation of HIV-1 protease and inhibition of assembly and budding of virus-like particles. Virology, 193 (1993) 661.

    Article  CAS  PubMed  Google Scholar 

  115. Koppelhus, U., Zachar, V., Nielsen, P.E., Liu, X., Eugen-Olsen, J. and Ebbesen, P., Efficient in vitroinhibition of HIV-1 gag reverse transcription by peptide nucleic acid (PNA) at minimal ratios of PNA/RNA. Nucl. Acids Res., 25 (1997) 2167.

    Article  CAS  PubMed  Google Scholar 

  116. Boulme, F., Freund, F., Moreau, S. et al., Modified (PNA, 2-O-methyl and phosphoramidate) anti-TAR antisense oli-gonucleotides as strong and specific inhibitors of in vitroHIV-1 reverse transcription. Nucl. Acids Res., 26 (1999) 5492.

    Google Scholar 

  117. Lee, R., Kaushik, N., Modak, M.J., Vinayak, R. and Pandey, V.N., Polyamide nucleic acid targeted to the primer binding site of the HIV-1 RNA genome blocks in vitroHIV-1 reverse transcription. Biochemistry, 37 (1998) 900.

    CAS  PubMed  Google Scholar 

  118. Mischiati, C., Borgatti, M., Bianchi, N. et al., Interaction of the human NF-kappaB p52 transcription factor with DNA-PNA hybrids mimicking the NF-kappaB binding sites of the human immunodeficiency virus type 1 promoter. J. Biol. Chem., 274 (1999) 33114.

    Article  CAS  PubMed  Google Scholar 

  119. Danner, S.A., Carr, A., Leonard, J.M. et al., A short-term study of the safety, pharmacokinetics, and efficacy of ri-tonavir, an inhibitor of HIV-1 protease. European-Australian Collaborative Ritonavir Study Group. N. Engl. J. Med., 333 (1995) 1528.

    Article  CAS  PubMed  Google Scholar 

  120. Markowitz, M., Saag, M., Powderly, W.G. et al., A prelimin-ary study of ritonavir, an inhibitor of HIV-1 protease, to treat HIV-1 infection. N. Engl. J. Med., 333 (1995) 1534.

    Article  CAS  PubMed  Google Scholar 

  121. Collier, A.C., Coombs, R.W., Schoenfeld, D.A. et al., Treatment of human immunodeficiency virus infection with saquinavir, zidovudine, and zalcitabine. AIDS Clinical Trials Group. N. Engl. J. Med., 334 (1996) 1011.

    Article  CAS  PubMed  Google Scholar 

  122. Schapiro, J.M., Winters, M.A., Stewart, F. et al., The effect of high-dose saquinavir on viral load and CD4+ T-cell counts in HIV-infected patients (see comments). Ann. Intern. Med., 124 (1996) 1039.

    CAS  PubMed  Google Scholar 

  123. Hammer, S.M., Squires, K.E., Hughes, M.D. et al., A con-trolled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical Trials Group 320 Study Team (see comments). N. Engl. J. Med., 337 (1997) 725.

    Article  CAS  PubMed  Google Scholar 

  124. Gulick, R.M., Mellors, J.W., Havlir, D. et al., Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiret-roviral therapy (see comments). N. Engl. J. Med., 337 (1997) 734.

    Article  CAS  PubMed  Google Scholar 

  125. Summerton, J., Morpholino antisense oligomers: The case for an RNase H-independent structural type. Biochim. Bio-phys. Acta, 1489 (1999) 141.

    CAS  Google Scholar 

  126. Stein, D., Foster, E., Huang, S.B., Weller, D. and Sum-merton, J., A specificity comparison of four antisense types: Morpholino, 2-O-methyl RNA, DNA, and phosphorothioate DNA. Antisense Nucl. Acids Drug Dev., 7 (1997) 151.

    CAS  Google Scholar 

  127. Summerton, J., Stein, D., Huang, S.B., Matthews, P., Weller, D. and Partridge, M., Morpholino and phosphorothioate an-tisense oligomers compared in cell-free and in-cell systems. Antisense Nucl. Acids Drug Dev., 7 (1997) 63.

    CAS  Google Scholar 

  128. Knudsen, H. and Nielsen, P.E., Antisense properties of duplex-and triplex-forming PNAs. Nucl. Acids Res., 24 (1996) 494.

    Article  CAS  PubMed  Google Scholar 

  129. Gambacorti-Passerini, C., Molognim, L., Bertazzoli, C. et al., In vitrotranscription and translation inhibition by anti-promyelocytic leukemia (PML)/retinoic acid receptor alpha and anti-PML peptide nucleic acid. Blood, 88 (1996) 1411.

    CAS  PubMed  Google Scholar 

  130. Mologni, L., Marchesi, E. and Nielsen, P.E. Gambacorti-Passerini C., Inhibition of promyelocytic leukemia (pml)/retinoic acid receptor-alpha and pml expression in acute promyelocytic leukemia cells by anti-pml peptide nucleic acid. Cancer Res., 61 (2001) 5468.

    CAS  PubMed  Google Scholar 

  131. Pooga, M., Soomets, U., Hallbrink, M. et al., Cell penet-rating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol., 16 (1998) 857.

    Article  CAS  PubMed  Google Scholar 

  132. Scarfi, S., Giovine, M., Gasparini, A. et al., Modified peptide nucleic acids are internalized in mouse macrophages RAW 264.7 and inhibit inducible nitric oxide synthase. FEBS Lett., 451 (1999) 264.

    Article  CAS  PubMed  Google Scholar 

  133. Dias, N., Dheur, S., Nielsen, P.E. et al., Antisense PNA tride-camers targeted to the coding region of Ha-ras mRNA arrest polypeptide chain elongation. J. Mol. Biol., 294 (1999) 403.

    Article  CAS  PubMed  Google Scholar 

  134. Brown, S.C., Thomson, S.A., Veal, J.M. and Davis, D.G., NMR solution structure of a peptide nucleic acid complexed with RNA. Science, 265 (1994) 777.

    CAS  PubMed  Google Scholar 

  135. Betts, L., Josey, J.A., Veal, J.M. and Jordan, S.R., A nuc-leic acid triple helix formed by a peptide nucleic acid-DNA complex. Science, 270 (1995) 1838.

    CAS  PubMed  Google Scholar 

  136. Eriksson, M. and Nielsen, P.E., Solution structure of a pep-tide nucleic acid-DNA duplex. Nat. Struct. Biol., 3 (1996) 410.

    Article  CAS  PubMed  Google Scholar 

  137. Rasmussen, H., Kastrup, J.S., Nielsen, J.N., Nielsen, J.M. and Nielsen, P.E., Crystal structure of a peptide nucleic acid (PNA) duplex at 1.7 A resolution. Nat. Struct. Biol., 4 (1997) 98.

    Article  CAS  PubMed  Google Scholar 

  138. Bastide, L., Boehmer, P.E., Villani, G. and Lebleu, B., In-hibition of a DNA-helicase by peptide nucleic acids. Nucl. Acids Res., 27 (1999) 551.

    Article  CAS  PubMed  Google Scholar 

  139. Boehmer, P.E. and Lehman, I.R., Herpes simplex virus DNA replication. Annu. Rev. Biochem., 66 (1997) 347.

    Article  CAS  PubMed  Google Scholar 

  140. Kurg, R., Langel, U. and Ustav, M., Inhibition of the bovine papillomavirus E2 protein activity by peptide nucleic acid. Virus Res., 66 (2000) 39.

    Article  CAS  PubMed  Google Scholar 

  141. Spalholz, B.A., Yang, Y.C. and Howley, P.M., Transactiv-ation of a bovine papilloma virus transcriptional regulatory element by the E2 gene product. Cell, 42 (1985) 183.

    Article  CAS  PubMed  Google Scholar 

  142. Tackett, A.J., Wei, L., Cameron, C.E. and Raney, K.D., Un-winding of nucleic acids by HCV NS3 helicase is sensitive to the structure of the duplex. Nucl. Acids Res., 29 (2001) 565.

    Article  CAS  PubMed  Google Scholar 

  143. Stock, R.P., Olvera, A., Sanchez, R. et al., Inhibition of gene expression in Entamoeba histolytica with antisense peptide nucleic acid oligomers. Nat. Biotechnol., 19 (2001) 231.

    Article  CAS  PubMed  Google Scholar 

  144. Good, L. and Nielsen, P.E., Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nat. Biotechnol., 16 (1998) 355..286

    Article  CAS  PubMed  Google Scholar 

  145. Good, L., Awasthi, S.K., Dryselius, R., Larsson, O. and Nielsen, P.E., Bactericidal antisense effects of peptide-PNA conjugates. Nat. Biotechnol., 19 (2001) 360.

    Article  CAS  PubMed  Google Scholar 

  146. Pooga, M., Hallbrink, M., Zorko, M. and Langel, U., Cell penetration by transportan. FASEB J., 12 (1998) 67.

    CAS  PubMed  Google Scholar 

  147. Pooga, M., Lindgren, M., Hallbrink, M., Brakenhielm, E. and Langel, U., Galanin-based peptides, galparan and trans-portan, with receptor-dependent and independent activities. Ann. N. Y. Acad. Sci., 863 (1998) 450.

    Article  CAS  PubMed  Google Scholar 

  148. Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chas-saing, G. and Prochiantz, A., Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J. Biol. Chem., 271 (1996) 18188.

    CAS  PubMed  Google Scholar 

  149. Villa, R., Folini, M., Lualdi, S., Veronese, S., Daidone, M.G. and Zaffaroni, N., Inhibition of telomerase activity by a cell-penetrating peptide nucleic acid construct in human melanoma cells. FEBS Lett., 473 (2000) 241.

    Article  CAS  PubMed  Google Scholar 

  150. Feng, J., Funk, W.D., Wang, S.S. et al., The RNA component of human telomerase. Science, 269 (1995) 1236.

    CAS  PubMed  Google Scholar 

  151. Brown, D., Kogan, S., Lagasse, E. et al., A PMLRARal-pha transgene initiates murine acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA, 94 (1997) 2551.

    CAS  PubMed  Google Scholar 

  152. Hamilton, S.E., Simmons, C.G., Kathiriya, I.S. and Corey, D.R., Cellular delivery of peptide nucleic acids and inhibition of human telomerase. Chem. Biol., 6 (1999) 343.

    Article  CAS  PubMed  Google Scholar 

  153. Kalderon, D., Roberts, B.L., Richardson, W.D. and Smith, A.E., A short amino acid sequence able to specify nuclear location. Cell, 39 (1984) 499.

    Article  CAS  PubMed  Google Scholar 

  154. Cutrona, G., Carpaneto, E.M., Ulivi, M. et al., Effects in live cells of a c-myc anti-gene PNA linked to a nuclear localization signal. Nat. Biotechnol., 18 (2000) 300.

    CAS  PubMed  Google Scholar 

  155. Boffa, L.C., Scarfi, S., Mariani, M.R. et al., Dihydrotestoster-one as a selective cellular/nuclear localization vector for anti-gene peptide nucleic acid in prostatic carcinoma cells. Cancer Res., 60 (2000) 2258.

    CAS  PubMed  Google Scholar 

  156. Basu, S. and Wickstrom, E., Synthesis and characterization of a peptide nucleic acid conjugated to a D-peptide analog of insulin-like growth factor 1 for increased cellular uptake. Bioconjug. Chem., 8 (1997) 481.

    Article  CAS  PubMed  Google Scholar 

  157. Penichet, M.L., Kang, Y.S., Pardridge, W.M., Morrison, S.L. and Shin, S.U., An antibody-avidin fusion protein specific for the transferrin receptor serves as a delivery vehicle for effect-ive brain targeting: Initial applications in anti-HIV antisense drug delivery to the brain. J. Immunol., 163 (1999) 4421.

    CAS  PubMed  Google Scholar 

  158. Pardridge, W.M., Boado, R.J. and Kang, Y.S., Vector-mediated delivery of a polyamide ('peptide') nucleic acid analogue through the blood-brain barrier in vivo. Proc. Natl. Acad. Sci. USA, 92 (1995) 5592.

    CAS  PubMed  Google Scholar 

  159. Rezaei, K., Xu, I.S., Wu, W.P. et al., Intrathecal adminis-tration of PNA targeting galanin receptor reduces galanin-mediated inhibitory effect in the rat spinal cord. Neuroreport, 12 (2001) 317.

    CAS  PubMed  Google Scholar 

  160. Barre-Sinoussi, F., Chermann, J.C., Rey, F. et al., Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science, 220 (1983) 868.

    CAS  PubMed  Google Scholar 

  161. Gallo, R.C., Sarin, P.S., Gelmann, E.P. et al., Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science, 220 (1983) 865.

    CAS  PubMed  Google Scholar 

  162. Gao, F., Bailes, E., Robertson, D.L. et al., Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature, 397 (1999) 436.

    Article  CAS  PubMed  Google Scholar 

  163. Dalgleish, A.G., Beverley, P.C., Clapham, P.R., Crawford, D.H., Greaves, M.F. and Weiss, R.A., The CD4 (T4) anti-gen is an essential component of the receptor for the AIDS retrovirus. Nature, 312 (1984) 763.

    Article  CAS  PubMed  Google Scholar 

  164. Klatzmann, D., Champagne, E., Chamaret, S. et al., T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature, 312 (1984) 767.

    Article  CAS  PubMed  Google Scholar 

  165. Alkhatib, G., Combadiere, C., Broder, C.C. et al., CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science, 272 (1996) 1955.

    CAS  PubMed  Google Scholar 

  166. Bleul, C.C., Farzan, M., Choe, H. et al., The lympho-cyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature, 382 (1996) 829.

    Article  CAS  PubMed  Google Scholar 

  167. Deng, H., Liu, R., Ellmeier, W. et al., Identification of a ma-jor co-receptor for primary isolates of HIV-1 (see comments). Nature, 381 (1996) 661.

    Article  CAS  PubMed  Google Scholar 

  168. Dragic, T., Litwin, V., Allaway, G.P. et al., HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5 (see comments). Nature, 381 (1996) 667.

    Article  CAS  PubMed  Google Scholar 

  169. Feng, Y., Broder, C.C., Kennedy, P.E. and Berger, E.A., HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor (see comments). Science, 272 (1996) 872.

    CAS  PubMed  Google Scholar 

  170. Tang, H., Kuhen, K.L. and Wong-Staal, F., Lentivirus replication and regulation. Annu. Rev. Genet., 33 (1999) 133.

    Article  CAS  PubMed  Google Scholar 

  171. McCune, J.M., The dynamics of CD4+ T-cell depletion in HIV disease. Nature, 410 (2001) 974.

    Article  CAS  PubMed  Google Scholar 

  172. O'Brien, S.J. and Moore, J.P., The effect of genetic variation in chemokines and their receptors on HIV transmission and progression to AIDS. Immunol. Rev., 177 (2000) 99.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sei, S. Peptide nucleic acids as epigenetic inhibitors of HIV-1. Int J Pept Res Ther 10, 269–286 (2003). https://doi.org/10.1007/s10989-004-4925-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-004-4925-7

Navigation