Skip to main content
Log in

Anisotropic scaling limits of long-range dependent random fields

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

We review recent results on anisotropic scaling limits and the scaling transition for linear and their subordinated nonlinear long-range dependent stationary random fields X on ℤ2. The scaling limits \( {V}_{\upgamma}^X \) are taken over rectangles in ℤ2 whose sides increase as O(λ) and O(λγ ) as λ→∞for any fixed γ > 0. The scaling transition occurs at \( {\upgamma}_0^X>0 \) provided that \( {V}_{\upgamma}^X \) are different for \( \upgamma >{\upgamma}_0^X \) and \( \upgamma <{\upgamma}_0^X \) and do not depend on γ otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.V. Anh, N.N. Leonenko, and M.D. Ruiz-Medina, Macroscaling limit theorems for filtered spatiotemporal random fields, Stochastic Anal. Appl., 31:460–508, 2013.

    MathSciNet  MATH  Google Scholar 

  2. A. Astrauskas, Limit theorems for sums of linearly generated random variables, Lith. Math. J., 23:127–134, 1984.

    MathSciNet  MATH  Google Scholar 

  3. A. Astrauskas, J.B. Lévy, and M.S. Taqqu, The asymptotic dependence structure of the linear fractional Lévy motion, Lith. Math. J., 31(1):1–19, 1991.

    MATH  Google Scholar 

  4. F. Avram and M.S. Taqqu, Noncentral limit theorems and Appell polynomials, Ann. Probab., 15:767–775, 1987.

    MathSciNet  MATH  Google Scholar 

  5. A. Ayache, S. Leger, and M. Pontier, Drap brownien fractionnaire, Potential Anal., 17:31–43, 2002.

    MathSciNet  MATH  Google Scholar 

  6. S. Bai and M.S. Taqqu, Generalized Hermite processes, discrete chaos and limit theorems, Stochastic Processes Appl., 124(4):1710–1739, 2014.

    MathSciNet  MATH  Google Scholar 

  7. O.E. Barndorff-Nielsen, F.E. Benth, and A.E.D. Veraart, Ambit Stochastics, Springer, New York, 2018.

    MATH  Google Scholar 

  8. J. Beran, Y. Feng, S. Gosh, and R. Kulik, Long-memory Processes: Probabilistic Properties and Statistical Methods, Springer, New York, 2013.

    MATH  Google Scholar 

  9. H. Biermé, M.M. Meerschaert, and H.-P. Scheffler, Operator scaling stable random fields, Stochastic Processes Appl., 117(3):312–332, 2007.

    MathSciNet  MATH  Google Scholar 

  10. E. Bolthausen, On the central limit theorem for stationary mixing random fields, Ann. Probab., 10:1047–1050, 1982.

    MathSciNet  MATH  Google Scholar 

  11. P. Breuer and P. Major, Central limit theorems for non-linear functionals of Gaussian fields, J. Multivariate Anal., 13:425–441, 1983.

    MathSciNet  MATH  Google Scholar 

  12. A. Bulinski, E. Spodarev, and F. Timmermann, Central limit theorems for the excursion sets volumes of weakly dependent random fields, Bernoulli, 18:100–118, 2012.

    MathSciNet  MATH  Google Scholar 

  13. D.R. Cox, Long-range dependence: A review, in H.A. David and H.T. David (Eds.), Statistics: An Appraisal, Iowa State Univ. Press, Iowa, 1984, pp. 55–74.

  14. J. Damarackas and V. Paulauskas, Spectral covariance and limit theorems for random fields with infinite variance, J. Multivariete Anal., 153:156–175, 2017.

    MathSciNet  MATH  Google Scholar 

  15. J. Damarackas and V. Paulauskas, On Lamperti type limit theorem and scaling transition for random fields, preprint, 2019.

  16. J. Damarackas and V. Paulauskas, Some remarks on scaling transition for random fields, preprint, 2019, arXiv:1909.09399.v1.

  17. Y. Davydov and V. Paulauskas, Lamperti type theorems for random fields and processes, Theor. Probab. Appl., 63:520–544, 2019.

    MATH  Google Scholar 

  18. Yu.A. Davydov, The invariance principle for stationary processes, Theor. Probab. Appl., 15:487–498, 1970.

    MathSciNet  MATH  Google Scholar 

  19. H. Dehling and W. Philipp, Empirical process techniques for dependent data, in H. Dehling, T. Mikosch, and M. Sørensen (Eds.), Empirical Process Techniques for Dependent Data, Birkhäuser, Boston, 2002, pp. 1–113.

  20. R.L. Dobrushin, Gaussian and their subordinated self-similar random generalized fields, Ann. Probab., 7:1–28, 1979.

    MathSciNet  MATH  Google Scholar 

  21. R.L. Dobrushin, Automodel generalized random fields and their renormgroup, in R.L. Dobrushin and Ya.G. Sinai (Eds.), Multicomponent Random Systems, Dekker, New York, 1980, pp. 153–198.

  22. R.L. Dobrushin and P. Major, Non-central limit theorems for non-linear functionals of Gaussian fields, Probab. Theory Relat. Fields, 50:27–52, 1979.

    MATH  Google Scholar 

  23. C. Dombry and I. Kaj, The on-off network traffic under intermediate scaling, Queueing Syst., 69:29–44, 2011.

    MathSciNet  MATH  Google Scholar 

  24. P. Doukhan, Models, inequalities, and limit theorems for stationary sequences, in P. Doukhan, G. Oppenheim, and M.S. Taqqu (Eds.), Theory and Applications of Long-Range Dependence, Birkhäuser, Boston, 2003, pp. 43–100.

  25. P. Doukhan, G. Lang, and D. Surgailis, Asymptotics of weighted empirical processes of linear random fields with long range dependence, Ann. Inst. Henri Poincaré, 38:879–896, 2002.

    MathSciNet  MATH  Google Scholar 

  26. R. Gaigalas, A Poisson bridge between fractional Brownian motion and stable Lévy motion, Stochastic Processes Appl., 116:447–462, 2006.

    MathSciNet  MATH  Google Scholar 

  27. R. Gaigalas and I. Kaj, Convergence of scaled renewal processes and a packet arrival model, Bernoulli, 9:671–703, 2003.

    MathSciNet  MATH  Google Scholar 

  28. M.G. Genton, O. Perrin, and M.S. Taqqu, Self-similarity and Lamperti transformation for random fields, Stoch. Models, 23:397–411, 2007.

    MathSciNet  MATH  Google Scholar 

  29. L. Giraitis, H.L. Koul, and D. Surgailis, Large Sample Inference for Long Memory Processes, Imperial College Press, London, 2012.

    MATH  Google Scholar 

  30. L. Giraitis, R. Leipus, and D. Surgailis, Aggregation of random coefficient GLARCH(1, 1) process, Econom. Theory, 26:406–425, 2010.

    MathSciNet  MATH  Google Scholar 

  31. L. Giraitis, S.A. Molchanov, and D. Surgailis, Long memory shot noises and limit theorems with application to Burgers’ equation, in D. Brillinger, P. Caines, J. Geweke, E. Parzen, M. Rosenblatt, and M.S. Taqqu (Eds.), New Directions in Time Series Analysis. Part II, Springer, New York, 1992, pp. 153–176.

    MATH  Google Scholar 

  32. L. Giraitis and D. Surgailis, A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle’s estimate, Probab. Theory Relat. Fields, 86:87–104, 1990.

    MathSciNet  MATH  Google Scholar 

  33. L. Giraitis and D. Surgailis, On shot noise processes attracted to fractional Lévymotion, in S. Cambanis, G. Samorodnitsky, and M.S. Taqqu (Eds.), Stable Processes and Related Topics, Birkhäuser, Boston, 1991, pp. 261–273.

    Google Scholar 

  34. C.W.J. Granger, Long memory relationship and the aggregation of dynamic models, J. Econom., 14:227–238, 1980.

    MathSciNet  MATH  Google Scholar 

  35. A. Hankey and H.E. Stanley, Systematic application of generalized homogeneous functions to static scaling, dynamic scaling, and universality, Phys. Rev. B, 6:3515–3542, 1972.

    Google Scholar 

  36. H.C. Ho and T. Hsing, Limit theorems for functionals of moving averages, Ann. Probab., 25:1636–1669, 1997.

    MathSciNet  MATH  Google Scholar 

  37. I.A. Ibragimov and Yu.V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen, 1971.

    MATH  Google Scholar 

  38. I. Kaj and M.S. Taqqu, Convergence to fractional Brownian motion and to the Telecom process: The integral representation approach, in M.E. Vares and V. Sidoravicius (Eds.), An Out of Equilibrium 2, Prog. Probab., Vol. 60, Birkhäuser, Basel, 2008, pp. 383–427.

  39. H. L. Koul, N. Mimoto, and D. Surgailis, Goodness-of-fit tests for marginal distribution of linear random fields with long memory, Metrika, 79:165–193, 2016.

    MathSciNet  MATH  Google Scholar 

  40. H. Kuensch, Almost sure entropy and the variational principle for random fields with unbounded state space, Z. Wahrscheinlichkeitstheor. Verw. Geb., 58:69–85, 1981.

    MathSciNet  MATH  Google Scholar 

  41. S.N. Lahiri and P.M. Robinson, Central limit theorems for long range dependent spatial linear processes, Bernoulli, 22:345–375, 2016.

    MathSciNet  MATH  Google Scholar 

  42. J. Lamperti, Semi-stable stochastic processes, Trans. Am. Math. Soc., 104:62–78, 1962.

    MathSciNet  MATH  Google Scholar 

  43. F. Lavancier, Invariance principles for non-isotropic long memory random fields, Stat. Inference Stoch. Process., 10:255–282, 2007.

    MathSciNet  MATH  Google Scholar 

  44. R. Leipus, V. Paulauskas, and D. Surgailis, Renewal regime switching and stable limit laws, J. Econom., 129:299–327, 2005.

    MathSciNet  MATH  Google Scholar 

  45. R. Leipus, A. Philippe, V. Pilipauskait˙e, and D. Surgailis, Sample autocovariances of random-coefficient AR(1) panel model, preprint, 2019, available from: https://hal.archives-ouvertes.fr/hal-01903304.

  46. R. Leipus and D. Surgailis, Random coefficient autoregression, regime switching and long memory, Adv. Appl. Probab., 35:737–754, 2003.

    MathSciNet  MATH  Google Scholar 

  47. N.N. Leonenko, Random Fields with Singular Spectrum, Kluwer, Dordrecht, 1999.

    MATH  Google Scholar 

  48. N.N. Leonenko, M.D. Ruiz-Medina, and M.S. Taqqu, Fractional elliptic, hyperbolic and parabolic random fields, Electron. J. Probab., 16:1134–1172, 2005.

    MathSciNet  MATH  Google Scholar 

  49. N.N. Leonenko and E. Taufer, Disaggregation of spatial autoregressive processes, Spat. Stat., 3:1–20, 2013.

    Google Scholar 

  50. M. Lifshits, Random Processes by Example, World Scientific, New Jersey, 2014.

    MATH  Google Scholar 

  51. T. Mikosch, S. Resnick, H. Rootzén, and A. Stegeman, Is network traffic approximated by stable Lévy motion or fractional Brownian motion?, Ann. Appl. Probab., 12:23–68, 2002.

    MathSciNet  MATH  Google Scholar 

  52. D. Nualart and G. Peccati, Central limit theorems for sequences of multiple stochastic integrals, Ann. Probab., 33:177–193, 2005.

    MathSciNet  MATH  Google Scholar 

  53. V. Paulauskas, Some remarks on the definitions of memory for stationary random processes and fields, Lith.Math. J., 56(2):229–250, 2016.

    MathSciNet  MATH  Google Scholar 

  54. V. Pilipauskaitė, V. Skorniakov, and D. Surgailis, Joint temporal and contemporaneous aggregation of randomcoefficient AR(1) processes with infinite variance, preprint, 2019.

  55. V. Pilipauskaitė and D. Surgailis, Joint temporal and contemporaneous aggregation of random-coefficient AR(1)- processes, Stoch. Process. Appl., 124:1011–1035, 2014.

    MathSciNet  MATH  Google Scholar 

  56. V. Pilipauskaitė and D. Surgailis, Joint aggregation of random-coefficientAR(1) processeswith common innovations, Statist. Probab. Lett., 101:73–82, 2015.

    MathSciNet  MATH  Google Scholar 

  57. V. Pilipauskaitė and D. Surgailis, Anisotropic scaling of random grain model with application to network traffic, J. Appl. Probab., 53:857–879, 2016.

    MathSciNet  MATH  Google Scholar 

  58. V. Pilipauskaitė and D. Surgailis, Scaling transition for nonlinear random fields with long-range dependence, Stoch. Process. Appl., 127:2751–2779, 2017.

    MathSciNet  MATH  Google Scholar 

  59. D. Puplinskaitė and D. Surgailis, Aggregation of random coefficient AR(1) process with infinite variance and idiosyncratic innovations, Adv. Appl. Probab., 42:509–527, 2010.

    MathSciNet  MATH  Google Scholar 

  60. D. Puplinskaitė and D. Surgailis, Scaling transition for long-range dependent gaussian random fields, Stoch. Process. Appl., 125:2256–2271, 2015.

    MathSciNet  MATH  Google Scholar 

  61. D. Puplinskaitė and D. Surgailis, Aggregation of autoregressive random fields and anisotropic long-range dependence, Bernoulli, 22:2401–2441, 2016.

    MathSciNet  MATH  Google Scholar 

  62. G. Samorodnitsky, Stochastic Processes and Long Range Dependence, Springer, New York, 2016.

    MATH  Google Scholar 

  63. G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes, Chapman & Hall, New York, 1994.

    MATH  Google Scholar 

  64. A. Sly and C. Heyde, Nonstandard limit theorem for infinite variance functionals, Ann. Probab., 36:796–805, 2008.

    MathSciNet  MATH  Google Scholar 

  65. D. Surgailis, Zones of attraction of self-similar multiple integrals, Lith. Math. J., 22:327–340, 1982.

    MATH  Google Scholar 

  66. D. Surgailis, Stable limits of sums of bounded functions of long memory moving averages with finite variance, Bernoulli, 10:327–355, 2004.

    MathSciNet  MATH  Google Scholar 

  67. D. Surgailis, Anisotropic scaling limits of long-range dependent linear random fields on ℤ3, J. Math. Anal. Appl., 472:328–351, 2019.

    MathSciNet  MATH  Google Scholar 

  68. D. Surgailis, Scaling transition and edge effects for negatively dependent linear random fields on ℤ2, preprint, 2019.

    Google Scholar 

  69. M.S. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahrscheinlichkeitstheor. Verw. Geb., 31:287–302, 1975.

    MathSciNet  MATH  Google Scholar 

  70. M.S. Taqqu, Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrscheinlichkeitstheor. Verw. Geb., 50:53–83, 1979.

    MathSciNet  MATH  Google Scholar 

  71. M.S. Taqqu,W. Willinger, and R. Sherman, Proof of the fundamental result in self-similar traffic modeling, Comput. Commun. Rev., 27:5–23, 1997.

    Google Scholar 

  72. W. Willinger, M.S. Taqqu, M. Leland, and D. Wilson, Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level, IEEE/ACM Trans. Networking, 5:71–86, 1997.

    Google Scholar 

  73. P. Zaffaroni, Contemporaneous aggregation of linear dynamic models in large economies, J. Econom., 120:75–102, 2004.

    MathSciNet  MATH  Google Scholar 

  74. P. Zaffaroni, Aggregation and memory of models of changing volatility, J. Econom., 136:237–249, 2007.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donatas Surgailis.

Additional information

Dedicated to Vygantas Paulauskas, my close friend since student years, who shared with me many common views about life and mathematics

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surgailis, D. Anisotropic scaling limits of long-range dependent random fields. Lith Math J 59, 595–615 (2019). https://doi.org/10.1007/s10986-019-09459-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-019-09459-4

Keywords

Navigation