Skip to main content
Log in

Stream macroinvertebrate community metrics consistently respond to a spatiotemporal disturbance gradient but composition is more context-dependent

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Improving our understanding of how riverine communities respond to anthropogenic change requires spatial comparisons across multiple sites, high-resolution temporal analyses, and examination of both taxa and trait responses. However, studies that encompass all these aspects remain scarce.

Objectives

We used 10 years of annual monitoring data from 14 sampling sites in the Rhine-Main-Observatory (a Long-Term Ecological Research—LTER—site in Germany) to investigate spatiotemporal responses of stream macroinvertebrate communities along anthropogenic disturbance gradients (measured as ‘ecological quality’).

Methods

We examined spatiotemporal changes in various community components, including taxa, traits, metrics summarizing community responses (e.g., richness), and community composition.

Results

Spatially, consistent patterns over a decade of sampling revealed that less-disturbed communities were characterized by higher taxonomic and trait diversity and occurrence of pollution-sensitive taxa. Anthropogenic disturbance tended to become less severe through time, particularly in more upstream sites, likely driven by improvements in land-use and water quality. Conversely, more downstream sites exhibited a lesser degree of improvement (or none at all) likely owing to persistent or cumulative stressors. Overall, taxonomic/trait metrics consistently reflected the magnitude of the environmental improvement, while community composition did not, suggesting a weaker link between community changes and anthropogenic impacts severity.

Conclusion

Our results emphasize the importance of accounting for the variability in community responses to anthropogenic changes, and identifying optimal monitoring strategies to track such responses. In heterogeneous catchments, choosing which community component to focus and where to locate monitoring sites (e.g., monitoring ecological quality for the EU Water Framework Directive) can determine a timely detection of anthropogenic impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • AQEM Consortium (2013) ASTERICS—einschließlich Perlodes—deutsches Bewertungssystem auf Grundlage des Makrozoobenthos. Softwarehandbuch. http://www.fliessgewaesserbewertung.de/downloads/ASTERICS_Softwarehandbuch_Version4.pdf

  • Archaimbault V, Seglio-Polatera P, Garric J, Wasson JG, Babut M (2010) Assessing pollution of toxic sediment in streams using bio-ecological traits of benthic macroinvertebrates. Freshw Biol 55:1430–1446

    Article  CAS  Google Scholar 

  • Baker NJ, Pilotto F, Haubrock PJ et al (2021) Multidecadal changes in functional diversity lag behind the recovery of taxonomic diversity. Ecol Evol. https://doi.org/10.1002/ece3.8381

    Article  PubMed  PubMed Central  Google Scholar 

  • Birk S, Chapman D, Carvalho L et al (2020) Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat Ecol Evol 4:1060–1068

    Article  PubMed  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Böhmer J, Rawer-Jost C, Zenker A et al (2004) Assessing streams in Germany with benthic invertebrates: development of a multimetric invertebrate based assessment system. Limnologica 34:416–432

    Article  Google Scholar 

  • Bonada N, Rieradevall M, Prat N (2007) Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia 589:91–106

    Article  Google Scholar 

  • Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533–540

    Article  Google Scholar 

  • Brumm KJ, Hanks RD, Baldwin RF et al (2022) A scale-linked conservation planning framework for freshwater ecosystems. Landsc Ecol 37:2589–2605

    Article  Google Scholar 

  • Bund/Länder- Arbeitsgemeinschaft Wasser (LAWA) (2014) Korrelationen zwischen biologischen Qualitätskomponenten und allgemeinen chemischen und physika-lisch-chemischen Parametern in Fließgewässern. Endbericht. Correlations between biological quality elements and general chemical and physico-chemical parameters in flowing waters. Final report. Project O 3.12 of the federal state funding program “water, soil and waste” 2012. Essen, Germany, 190 pp

  • Capeletti J, Marchese MR, Zilli FL (2021) Evaluating macroinvertebrate metrics for ecological assessment of large saline rivers (Argentina). Environ Sci Pollut Res 28:66464–66476

    Article  Google Scholar 

  • Carvalho L, Mackay EB, Cardoso AC et al (2019) Protecting and restoring Europe’s waters: an analysis of the future development needs of the Water Framework Directive. Sci Total Environ 658:1228–1238

    Article  CAS  PubMed  Google Scholar 

  • Cavus I, Kalin L, Kara F (2017) Impacts of urban headwater disturbances on downstream sediment loading where streamside management zones for forest harvesting activities are present downstream. Int J Sediment Res 32:4

    Article  Google Scholar 

  • Charvet S, Statzner B, Usseglio-Polatera P, Dumont B (2000) Traits of benthic macroinvertebrates in semi-natural French streams: an initial application to biomonitoring in Europe. Freshw Biol 43:277–296

    Article  Google Scholar 

  • Chen K, Rajper AR, Hughes RM, Hughes RM, Olson JR, Wei H, Wang B (2019) Incorporating functional traits to enhance multimetric index performance and assess land use gradients. Sci Total Environ 691:1005–1015

    Article  CAS  PubMed  Google Scholar 

  • Convention on Biological Diversity (2020) Global biodiversity outlook 5. Secretariat of the Convention on Biological Diversity, Montreal, p 211

    Google Scholar 

  • CORINE (2021) Copernicus land monitoring service 2021, European Environment Agency (EEA). https://land.copernicus.eu/pan-european/corine-land-cover. Assessed 1 May 2021

  • Crabot J, Mondy CP, Usseglio-Polatera P, Fritz KM, Wood PJ, Greenwood MJ, Bogan MT, Meyer EI, Datry T (2021) A global perspective on the functional responses of stream communities to flow intermittence. Ecography 44:1511–1523

    Article  PubMed  PubMed Central  Google Scholar 

  • Dawson SK, Carmona CP, González-Suárez M, Jönsson M, Chichorro F, Mallen-Cooper M, Melero Y, Moor H, Simaika JP, Duthie AB (2021) The traits of “trait ecologists”: an analysis of the use of trait and functional trait terminology. Ecol Evol 11:16434–16445

    Article  PubMed  PubMed Central  Google Scholar 

  • De Brouwer JHF, Verdonschot PFM, Eekhout JPC et al (2020) Macroinvertebrate taxonomic and trait-based responses to large-wood reintroduction in lowland streams. Freshw Sci 39(4):693–703

    Article  Google Scholar 

  • de Vries J, Kraak MHS, Ralf CM et al (2019) Quantifying cumulative stress acting on macroinvertebrate assemblages in lowland streams. Sci Total Environ 694:133630

    Article  PubMed  Google Scholar 

  • Desrosiers M, Usseglio-polatera P, Archaimbault V, Larras F, Méthot G, Pinel-Alloul B (2019) Assessing anthropogenic pressure in the St. Lawrence River using traits of benthic macroinvertebrates. Sci Total Environ 649:233–246

    Article  CAS  PubMed  Google Scholar 

  • Didham RK, Basset Y, Collins CM et al (2020) Interpreting insect declines: seven challenges and a way forward. Insect Conserv Divers 13:103–114

    Article  Google Scholar 

  • Domisch S, Friedrichs M, Hein T et al (2019) Spatially explicit species distribution models: a missed opportunity in conservation planning? Divers Distrib 25:758–769

    Article  Google Scholar 

  • Dornelas M, Gotelli NJ, McGill B et al (2014) Assemblage time series reveal biodiversity change but not systematic loss. Science 344(6181):296–299

    Article  CAS  PubMed  Google Scholar 

  • DWD (2021) German Weather Service climate data. https://www.dwd.de/DE/leistungen/radolan/radolan.html, https://opendata.dwd.de/climate_environment/CDC/grids_germany/hourly/Project_TRY/, https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/air_temperature/. Assessed 1 June 2021

  • EC (2007) Ecological quality ratios for ecological quality assessment in inland and marine waters. Office for Official Publications of the European Communities. Luxembourg

  • Fernandes IM, Henriques-Silva R, Penha J et al (2014) Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: the case of floodplain-fish communities. Ecography 37:464–475

    Article  Google Scholar 

  • Früh D, Stoll S, Haase P (2012a) Physicochemical and morphological degradation of stream and river habitats increases invasion risk. Biol Invasions 14:2243–2253

    Article  Google Scholar 

  • Früh D, Stoll S, Haase P (2012b) Physico-chemical variables determining the invasion risk of freshwater habitats by alien mollusks and crustaceans. Ecol Evol 2:2843–2853

    Article  PubMed  PubMed Central  Google Scholar 

  • Gál B, Szivák I, Heino J et al (2019) The effect of urbanization on freshwater macroinvertebrates—knowledge gaps and future research directions. Ecol Indic 104:357–364

    Article  Google Scholar 

  • Haase P, Lohse S, Pauls S et al (2004) Assessing streams in Germany with benthic invertebrates: development of a practical standardized protocol for macroinvertebrate sampling and sorting. Limnologica 34:349–365

    Article  Google Scholar 

  • Haase P, Frenzel M, Klotz S et al (2016) The long-term ecological research (LTER) network: relevance, current status, future perspective and examples from marine, freshwater and terrestrial long-term observation. Ecol Indic 65:1–3

    Article  Google Scholar 

  • Haase P, Tonkin JD, Stoll S et al (2018) The next generation of site-based long-term ecological monitoring: linking essential biodiversity variables and ecosystem integrity. Sci Total Environ 613–614:1376–1384

    Article  PubMed  Google Scholar 

  • Haase P, Pilotto F, Li F et al (2019) Moderate warming over the past 25 years has already reorganized stream invertebrate communities. Sci Total Environ 658:1531–1538

    Article  CAS  PubMed  Google Scholar 

  • Hallett L, Avolio ML, Carroll I, Jones SK, MacDonald AAM, Flynn DFB, Slaughter P, Ripplinger J, Collins SL, Gires C, Jones MB (2022) Community dynamic metrics—package ‘codyn’. https://cran.r-project.org/web/packages/codyn/codyn.pdf

  • Heino J, Melo AS, Siqueira T et al (2015) Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw Biol 60:845–869

    Article  Google Scholar 

  • Hering D, Moog O, Sandin L et al (2004) Overview and application of the AQEM assessment system. In: Hering D, Verdonschot PFM, Moog O, Sandin L (eds) Integrated assessment of running waters in Europe. Springer, Dordrecht, pp 1–20

    Chapter  Google Scholar 

  • Hering D, Feld CK, Moog O, Ofenböck T (2006) Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. In: Furse MT, Hering D, Brabec K, Buffagni A, Sandin L, Verdonschot P (eds) The ecological status of European rivers: evaluation and intercalibration of assessment methods. Springer, Dordtrecht, pp 311–324

    Chapter  Google Scholar 

  • Heß S, Hof D, Oetken M, Sundermann A (2023) Effects of multiple stressors on benthic invertebrates using Water Framework Directive monitoring data. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2023.162952

    Article  PubMed  Google Scholar 

  • Hillebrand H, Blasius B, Borer ET et al (2018) Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J Appl Ecol 55:169–184

    Article  Google Scholar 

  • InVeKoS (2021) Crop data based on the German agricultural subsidies program. https://www.zi-daten.de/. Assessed 1 May 2021

  • Jourdan J, O’Hara RB, Bottarin R et al (2018) Effects of changing climate on European stream invertebrate communities: a long-term data analysis. Sci Total Environ 621:588–599

    Article  CAS  PubMed  Google Scholar 

  • Juvigny-Khenafou NPD, Piggott JJ, Atkinson D, Zhang Y, Macaulay SJ, Wu N, Matthaei CD (2020) Impacts of multiple anthropogenic stressors on stream macroinvertebrate community composition and functional diversity. Ecol Evol 11(1):133–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Krynak EM, Yates AG (2018) Benthic invertebrate taxonomic and trait associations with land use in an intensively managed watershed: implications for indicator identification. Ecol Indic 93:1050–1059

    Article  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Laliberté E, Legendre P, Shipley B (2014) Package “FD”: measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R package version 1.0-12. https://cran.r-project.org/web/packages/FD/index.html

  • Larson EI, Poff NL, Funk WC, Harrington RA, Kondratieff BC, Morton SG, Flecker AS (2021) A unifying framework for analyzing temporal changes in functional and taxonomic diversity along disturbance gradients. Ecology 102(11):e03503

    Article  PubMed  Google Scholar 

  • Lavorel S, Grigulis K, McIntyre S et al (2008) Assessing functional diversity in the field—methodology matters! Funct Ecol. https://doi.org/10.1111/j.1365-2435.2007.01339.x

    Article  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  PubMed  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Lemm JU, Venohr M, Globevnik L et al (2021) Multiple stressors determine river ecological status at the European scale: towards an integrated understanding of river status deterioration. Glob Change Biol 27:1962–1975

    Article  CAS  Google Scholar 

  • Leps M, Tonkin JD, Dahm V et al (2015) Disentangling environmental drivers of benthic invertebrate assemblages: the role of spatial scale and riverscape heterogeneity in a multiple stressor environment. Sci Total Environ 536:546–556

    Article  CAS  PubMed  Google Scholar 

  • Li F, Sundermann A, Stoll S et al (2016) A newly developed dispersal metric indicates the succession of benthic invertebrates in restored rivers. Sci Total Environ 569–570:1570–1578

    Article  PubMed  Google Scholar 

  • Li Z, Wang J, Liu Z et al (2019) Different responses of taxonomic and functional structures of stream macroinvertebrate communities to local stressors and regional factors in a subtropical biodiversity hotspot. Sci Total Environ 655:1288–1300

    Article  CAS  PubMed  Google Scholar 

  • Lorenz AW, Haase P, Januschke K et al (2018) Revisiting restored river reaches—assessing change of aquatic and riparian communities after five years. Sci Total Environ 613–614:1185–1195

    Article  PubMed  Google Scholar 

  • Macadam CR, Stockan JA (2015) More than just fish food: ecosystem services provided by freshwater insects. Ecol Entomol 40:113–123

    Article  Google Scholar 

  • Maloney KO, Munguia P, Mitchell RM (2011) Anthropogenic disturbance and landscape patterns affect diversity patterns of aquatic benthic macroinvertebrates. J N Am Benthol Soc 30(1):284–295

    Article  Google Scholar 

  • Markert N, Guhl B, Feld CK (2022) The hierarchy of multiple stressors’ effects on benthic invertebrates: a case study from the rivers Erft and Niers, Germany. Environ Sci Eur 34:100

    Article  Google Scholar 

  • Marques SP, Manna RL, Frauendorf TC et al (2020) Urbanization can increase the invasive potential of alien species. J Anim Ecol 89:2345–2355

    Article  Google Scholar 

  • Menezes S, Baird DJ, Soares AMVM (2010) Beyond taxonomy: a review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. J Appl Ecol 47(4):711–719

    Article  Google Scholar 

  • Mirtl M, Borer E, Djukic I, Forsius M, Haubold H, Hugo W, Jourdan J, Lindenmayer D, McDowell WH, Murauka H, Orenstein DE, Pauw JC, Peterseil J, Shibata H, Wohner C, Yu X, Haase P (2018) Genesis, goals and achievements of Long-Term Ecological Research at the global scale: a critical review of ILTER and future implications. Sci Total Environ 626:1439–1462

    Article  CAS  PubMed  Google Scholar 

  • Mondy CP, Usseglio-Polatera P (2014) Using fuzzy-coded traits to elucidate the non-random role of anthropogenic stress in the functional homogenisation of invertebrate assemblages. Freshw Biol 59:584–600

    Article  Google Scholar 

  • Mouillot D, Graham NA, Villéger S, Mason NW, Bellwood DR (2013) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28(3):167–177

    Article  PubMed  Google Scholar 

  • Mouton TL, Tonkin JD, Stephenson F (2020) Increasing climate-driven taxonomic homogenization but functional differentiation among river macroinvertebrate assemblages. Glob Change Biol 26:6904–6915

    Article  Google Scholar 

  • Nguyen HH, Recknagel F, Meyer W, Frizenschaf J, Schrestha MK (2017) Modelling the impacts of altered management practices, land use and climate changes on the water quality of the Millbrook catchment-reservoir system in South Australia. J Environ Manag 202:1–11

    Article  CAS  Google Scholar 

  • Nguyen TV, Sarrazin FJ, Ebeling P, Musolff A, Fleckenstein JH, Kumar R (2022) Toward understanding of long-term nitrogen transport and retention dynamics across German catchments. Geophys Res Lett 49:e2022GL100278

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M et al (2019) Vegan: community ecology package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan

  • Pagès J (2002) Analyse Factorielle Multiple Appliquée Aux Variables Qualitatives et Aux Données Mixtes. Revue Statistique Appliquee 4:5–37

    Google Scholar 

  • Paul MJ, Meyer JL (2008) Streams in the urban landscape. In: Marzluff JM, Shulenberger E, Endlicher W, Alberti M, Bradley G, Ryan C, Simon U, ZumBrunnen C (eds) Urban ecology. Springer, Boston. https://doi.org/10.1007/978-0-387-73412-5_12

    Chapter  Google Scholar 

  • Pinheiro J, Bates DM, Debroy S, Sarkar D, Heisterkamp S, Willigen BV, Ranke J (2021) Nlme: linear and nonlinear mixed effects models. R package version 3.1–152. Retrieved 1st October, 2021 from https://svn.r-project.org/R-packages/trunk/nlme/

  • Poff NL (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J N Am Benthol Soc 16:391–409

    Article  Google Scholar 

  • Poff NL, Olden JD, Vieira NK, Finn DS, Simmons MP, Kondratieff BC (2006) Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. J N Am Benthol Soc 25(4):730–755

    Article  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Resh VH, Hildrew AG, Statzner B (1994) Theoretical habitat templets, species traits, and species richness—a synthesis of long-term ecological research on the Upper Rhone river in the context of concurrently developed ecological theory. Freshw Biol 31:539–554

    Article  Google Scholar 

  • Ricotta C, de Bello F, Moretti M, Caccianiga M, Cerabolini BEL, Pavoine S (2016) Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol Evol 7:1386–1395

    Article  Google Scholar 

  • Sarremejane R, Cid N, Stubbington R et al (2020) DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates. Sci Data 7:386

    Article  PubMed  PubMed Central  Google Scholar 

  • Schäfer RB, Piggott JJ (2018) Advancing understanding and prediction in multiple stressor research through a mechanistic basis for null models. Glob Change Biol 24:1817–1826

    Article  Google Scholar 

  • Schäfer RB, Kefford BJ, Metzeling L et al (2011) A trait database of stream invertebrates for the ecological risk assessment of single and combined effects of salinity and pesticides in South-East Australia. Sci Total Environ 409:2055–2063

    Article  PubMed  Google Scholar 

  • Schmera D, Heino J, Podani J (2022) Characterising functional strategies and trait space of freshwater macroinvertebrates. Sci Rep 12:12283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt B, Kuhn U, Trepel M, Kreins P, Zinnbauer M, Wendland F, Herrmann F, Kunkel R, Tetzlaff B, Wolters T, Venohr M, Nguyen HH (2020) Model approach to determine the nutrient load and its reduction in all German river basins—Modellansatz zur Bestimmung der Nährstoffbelastung und ihrer Reduktion in allen deutschen Flussgebieten. Wasser und Abfall 1–2:1–6

    Google Scholar 

  • Schmidt-Kloiber A, Hering D (2015) An online tool that unifies, standardizes and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol Indic 53:271–282

    Article  Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    Article  PubMed  Google Scholar 

  • Statzner B, Beche LA (2010) Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshw Biol 55:80–119

    Article  Google Scholar 

  • Sundermann A, Gerhardt M, Kappes H et al (2013) Stressor prioritisation in river ecosystems: which environmental factors shape benthic invertebrate assemblage metrics? Ecol Indic 27:83–96

    Article  Google Scholar 

  • Toledo AE, Mendoza-Carranza M, Castillo MM et al (2021) Taxonomic and functional responses of macroinvertebrates to riparian forest conversion in tropical streams. Sci Total Environ 757:143972

    Article  Google Scholar 

  • Tornero I, Boix D, Bagella S (2018) Dispersal mode and spatial extent influence distance-decay patterns in pond metacommunities. PLoS ONE 13(8):e0203119

    Article  PubMed  PubMed Central  Google Scholar 

  • Traister EM, McDowell WH, Krám P et al (2013) Persistent effects of acidification on stream ecosystem structure and function. Freshw Sci 32(2):586–596

    Article  Google Scholar 

  • Usseglio-Polatera P, Richoux P, Bournard M et al (2001) A functional classification of benthic macroinvertebrates based on biological and ecological traits: application to river condition assessment and stream management. Archiv fuer Hydrobiologie 139:53–83

    Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37(1):130–137

    Article  Google Scholar 

  • Verberk WCEP, Siepel H, Esselink H (2008) Life-history strategies in freshwater macroinvertebrates. Freshw Biol 53:1722–1738

    Article  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  PubMed  Google Scholar 

  • Vitecek S, Johnson RK, Poikane S (2021) Assessing the ecological status of European rivers and lakes using benthic invertebrate communities: a practical catalogue of metrics and methods. Water 13:346

    Article  Google Scholar 

  • Vos M, Hering D, Gessner MO et al (2023) The asymmetric response concept explains ecological consequences of multiple stressor exposure and release. Sci Total Environ 872:162196

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li J, Tan L, Yao J, Zheng Y, Shen Q, Tan X (2023) The impact of land use on stream macroinvertebrates: a bibliometric analysis for 2010–2021. Environ Monit Assess 195:613

    Article  PubMed  Google Scholar 

  • White JC, Hill MJ, Bickerton MA et al (2017) Macroinvertebrate taxonomic and functional trait compositions within lotic habitats affected by river restoration practices. Environ Manag 60(3):513–525

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Collaborative Research Centre 1439 RESIST (Multilevel Response to Stressor Increase and Decrease in Stream Ecosystems; www.sfb-resist.de) funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—SFB 1439/1 2021 – 426547801. Peter Haase and James Sinclair received additional funding from the EU Horizon 2020 Project eLTER PLUS (Grand Agreement No. 871128). We thank the Hessian Agency for Nature Conservation, Environment and Geology (HLNUG) for the environmental data, the German Weather Service (DWD) for the climate data, and the Development Bank of Hesse (WIBank) for the InVeKoS data provision.

Funding

This work is supported by the Collaborative Research Centre 1439 RESIST (Multilevel Response to Stressor Increase and Decrease in Stream Ecosystems; www.sfb-resist.de) funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—SFB 1439/1 2021 – 426547801. Peter Haase and James Sinclair received additional funding from the EU Horizon 2020 Project eLTER PLUS (Grand Agreement No. 871128).

Author information

Authors and Affiliations

Authors

Contributions

PH and HHN designed the study. HHN, JK, and KP acquired data. HHN and JSS performed data analysis. HHN drafted original manuscript. All authors revised and approved the final submitted manuscript.

Corresponding author

Correspondence to Hong Hanh Nguyen.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 495 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.H., Kiesel, J., Peters, K. et al. Stream macroinvertebrate community metrics consistently respond to a spatiotemporal disturbance gradient but composition is more context-dependent. Landsc Ecol 38, 3133–3151 (2023). https://doi.org/10.1007/s10980-023-01769-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-023-01769-w

Keywords

Navigation