Skip to main content

Advertisement

Log in

The risk of ignoring fear: underestimating the effects of habitat loss and fragmentation on biodiversity

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Habitat loss and fragmentation threaten species not only through structural landscape changes and resource reduction, but also through modifications to species’ interactions. In particular, the observed consequences of landscape changes for predator–prey interactions often lack a clear pattern, indicating a range of complex behavioral adaptations and interactions. One potentially important contributing factor shaping these consequences is perceived predation risk and hence fear, which is rarely explicitly addressed in studies on habitat modification.

Objectives

We investigated how fear changes prey community structures under habitat loss and fragmentation and identified habitat properties driving these changes.

Methods

We applied a spatially-explicit, individual-based model which simulates home range formation of a mammalian prey community based on food availability and perceived predation risk. With the model we predicted prey community structures under different landscape scenarios.

Results

Fear intensified the negative effects of habitat loss and fragmentation on prey communities, causing a non-proportional diversity loss of up to 30%. Shifts in community composition from large to small animals were reinforced. The highest prey diversity was supported in landscapes with non-fragmented safe areas. Our findings highlight the importance of fear in shaping prey community structures under conditions of landscape change.

Conclusions

Our modelling approach addresses the mechanisms that link individual space use with community structure. It reveals the key role played by the spatial distribution of safe patches in mitigating the negative effects of landscape changes. Thereby, it supports modern conservation efforts that go beyond single-species approaches by taking changes in community structure into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrams PA (1991) Strength of indirect effects generated by optimal foraging. Oikos 62:167–176

    Google Scholar 

  • Bakker ES, Ritchie ME, Olff H, Milchunas DG, Knops JMH (2006) Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol Lett 9:780–788. https://doi.org/10.1111/j.1461-0248.2006.00925.x

    Article  PubMed  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Google Scholar 

  • Battin J (2004) When good animals love bad habitats: ecological traps and the conservation of animal populations. Conserv Biol 18:1482–1491

    Google Scholar 

  • Best LB (1986) Conservation tillage: ecological traps for nesting birds? Wildl Soc Bull 14:308–317

    Google Scholar 

  • Bragagnolo C, Nogueira AA, Pinto-da-Rocha R, Pardini R (2007) Harvestmen in an Atlantic forest fragmented landscape: evaluating assemblage response to habitat quality and quantity. Biol Conserv 139:389–400

    Google Scholar 

  • Brooks TM, Mittermeier RA, Mittermeier CG, Da Fonseca, GAB, Rylands AB, Konstant WR, Flick P, Pilgrim J, Oldfield S, Magin G, Hilton-Taylor (2002). Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16:909–923. https://doi.org/10.1046/j.1523-1739.2002.00530.x

    Article  Google Scholar 

  • Brown JS (1988) Patch use as an indicator of habitat preference, predation risk, and competition. Behav Ecol Sociobiol 22:37–47

    Google Scholar 

  • Buchmann CM, Schurr FM, Nathan R, Jeltsch F (2011) An allometric model of home range formation explains the structuring of animal communities exploiting heterogeneous resources. Oikos 120:106–118

    Google Scholar 

  • Buchmann CM, Schurr FM, Nathan R, Jeltsch F (2012) Movement upscaled—the importance of individual foraging movement for community response to habitat loss. Ecography (Cop) 35:436–445

    Google Scholar 

  • Buchmann CM, Schurr FM, Nathan R, Jeltsch F (2013) Habitat loss and fragmentation affecting mammal and bird communities—the role of interspecific competition and individual space use. Ecol Inform 14:90–98

    Google Scholar 

  • Caley MJ, St John J (1996) Refuge availability structures assemblages of tropical reef fishes. J Anim Ecol 65:414–428

    Google Scholar 

  • Chalfoun AD, Thompson FR, Ratnaswamy MJ (2002) Nest predators and fragmentation: a review and meta-analysis. Conserv Biol 16:306–318

    Google Scholar 

  • Ciuti S, Northrup JM, Muhly TB, Simi S, Musiani M, Pitt JA, Boyce MS (2012) Effects of humans on behaviour of wildlife exceed those of natural predators in a landscape of fear. PLoS ONE 7:e50611. https://doi.org/10.1371/journal.pone.0050611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Core Team R (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Creel S, Christianson D (2008) Relationships between direct predation and risk effects. Trends Ecol Evol 23:194–201

    PubMed  Google Scholar 

  • Crooks KR, Soulé ME (1999) Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400:563–566

    CAS  Google Scholar 

  • Díaz S, Purvis A, Cornelissen JHC, Mace GM, Donoghue MJ, Ewers RM, Jordano P, Pearse WD (2013) Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol Evol 3:2958–2975. https://doi.org/10.1002/ece3.601

    Article  PubMed  PubMed Central  Google Scholar 

  • Doherty TS, Dickman CR, Nimmo DG, Ritchie EG (2015) Multiple threats, or multiplying the threats? Interactions between invasive predators and other ecological disturbances. Biol Conserv 190:60–68

    Google Scholar 

  • Donelan SC, Grabowski JH, Trussell GC (2017) Refuge quality impacts the strength of nonconsumptive effects on prey. Ecology 98:403–411

    PubMed  Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    PubMed  Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663

    Google Scholar 

  • Fardila D, Kelly LT, Moore JL, McCarthy MA (2017) A systematic review reveals changes in where and how we have studied habitat loss and fragmentation over 20 years. Biol Conserv 212:130–138

    Google Scholar 

  • Fleishman E, Ray C, Sjögren-Gulve P, Boggs CL, Murphy DD (2002) Assessing the roles of patch quality, area, and isolation in predicting metapopulation dynamics. Conserv Biol 16:706–716. https://doi.org/10.1046/j.1523-1739.2002.00539.x

    Article  Google Scholar 

  • Gates JE, Gysel LW (1978) Avian nest dispersion and fledging success in field-forest ecotones. Ecology 59:871–883

    Google Scholar 

  • Gilliam JF, Fraser DF (1987) Habitat selection under predation hazard: test of a model with foraging minnows. Ecology 68:1856–1862

    PubMed  Google Scholar 

  • Gorini L, Linnell JDC, May R, Panzacchi M, Boitani L, Odden M, Nilsen EB (2012) Habitat heterogeneity and mammalian predator–prey interactions. Mamm Rev 42:55–77. https://doi.org/10.1111/j.1365-2907.2011.00189.x

    Article  Google Scholar 

  • Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz SK, Huse G, Huth A, Jepsen JU, Jørgensen C, Mooij WM, Müller B, Pe’er G, Piou C, Railsback SF, Robbins AM, Robbins MM, Rossmanith E, Rüger N, Strand E, Souissi S, Stillman RA, Vabø R, Visser U, De Angelis DL, (2006) A standard protocol for describing individual-based and agent-based models. Ecol Modell 198:115–126. https://doi.org/10.1016/j.ecolmodel.2006.04.023

    Article  Google Scholar 

  • Grimm V, Berger U, DeAngelis DL, Polhill, JG, Giske, J, Railsback SF (2010) The ODD protocol: a review and first update. Ecol Modell 221:2760–2768. https://doi.org/10.1016/j.ecolmodel.2010.08.019

    Article  Google Scholar 

  • Hale R, Swearer SE (2016) Ecological traps: current evidence and future directions. Proc R Soc Biol Sci 283:20152647

    Google Scholar 

  • Hanski I (2011) Habitat loss, the dynamics of biodiversity, and a perspective on conservation. Ambio 40:248–255

    PubMed  PubMed Central  Google Scholar 

  • Hanski I (2015) Habitat fragmentation and species richness. J Biogeogr 42:989–993

    Google Scholar 

  • Hargrove WW, Hoffman FM, Schwartz PM (2002) A fractal landscape realizer for generating synthetic maps. Conserv Ecol 6:1–11

    Google Scholar 

  • Haskell JP, Ritchie ME, Olff H (2002) Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges. Nature 418:527–530

    CAS  PubMed  Google Scholar 

  • Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251. https://doi.org/10.1023/B:BIOC.0000004319.91643.9e

    Article  Google Scholar 

  • Hixon M, Beets JP (1993) Predation, prey refuges, and the structure of coral-reef fish assemblages. Ecol Monogr 63:77–101

    Google Scholar 

  • Körner K, Jeltsch F (2008) Detecting general plant functional type responses in fragmented landscapes using spatially-explicit simulations. Ecol Modell 210:287–300

    Google Scholar 

  • Kuijper DPJ, Sahlén E, Elmhagen B, Chamaillé-Jammes S, Sand H, Lone K, Cromsigt JPGM (2016) Paws without claws? Ecological effects of large carnivores in anthropogenic landscapes. Proc R Soc London B Biol Sci 283:20161625. https://doi.org/10.1098/rspb.2016.1625

    Article  Google Scholar 

  • Lahti DC (2001) The “edge effects on nest predation” hypothesis after twenty years. Biol Conserv 99:365–374

    Google Scholar 

  • Laurance WF, Useche CD, Rendeiro J, Kalka M, Bradshaw CJA, Sloan SP, Laurance SG, Campbell M, Abernethy K, Alvarez P, Arroyo-Rodriguez V, Ashton P, Benítez-Malvido J, Blom A, Bobo KS, Cannon CH, Cao M, Carroll R, Chapman C, Coates R, Cords M, Danielsen F, De Dijn B, Dinerstein E, Donnelly MA, Edwards D, Edwards F, Farwig N, Fashing P, Forget PM, Foster M, Gale G, Harris D, Harrison R, Hart J, Karpanty S, John Kress W, Krishnaswamy J, Logsdon W, Lovett J, Magnusson W, Maisels F, Marshall AR, McClearn D, Mudappa D, Nielsen MR, Pearson R, Pitman N, Van Der Ploeg J, Plumptre A, Poulsen J, Quesada M, Rainey H, Robinson D, Roetgers C, Rovero F, Scatena F, Schulze C, Sheil D, Struhsaker T, Terborgh J, Thomas D, Timm R, Nicolas Urbina-Cardona J, Vasudevan K, Joseph Wright S, Carlos Arias-G J, Arroyo L, Ashton M, Auzel P, Babaasa D, Babweteera F, Baker P, Banki O, Bass M, Bila-Isia I, Blake S, Brockelman W, Brokaw N, Brühl CA, Bunyavejchewin S, Chao JT, Chave J, Chellam R, Clark CJ, Clavijo J, Congdon R, Corlett R, Dattaraja HS, Dave C, Davies G, De Mello Beisiegel B, De Nazaré Paes Da Silva R, Di Fiore A, Diesmos A, Dirzo R, Doran-Sheehy D, Eaton M, Emmons, L, Estrada A, Ewango C, Fedigan L, Feer F, Fruth B, Giacalone Willis J, Goodale U, Goodman S, Guix JC, Guthiga P, Haber W, Hamer K, Herbinger I, Hill J, Huang Z, Fang Sun I, Ickes K, Itoh A, Ivanauskas N, Jackes B, Janovec J, Janzen D, Jiangming M, Jin C, Jones T, Justiniano H, Kalko E, Kasangaki A, Killeen T, King HB, Klop E, Knott C, Koné I, Kudavidanage E, Lahoz Da Silva Ribeiro J, Lattke J, Laval R, Lawton R, Leal M, Leighton M, Lentino M, Leonel C, Lindsell J, Ling-Ling L, Eduard Linsenmair K, Losos E, Lugo A, Lwanga J, MacK AL, Martins M, Scott McGraw W, McNab R, Montag L, Myers Thompson J, Nabe-Nielsen J, Nakagawa M, Nepal S, Norconk M, Novotny V, O’Donnell S, Opiang M, Ouboter, P, Parker K, Parthasarathy N, Pisciotta K, Prawiradilaga D, Pringle C, Rajathurai S, Reichard U, Reinartz G, Renton K, Reynolds G, Reynolds V, Riley E, Rödel MO, Rothman J, Round P, Sakai S, Sanaiotti T, Savini T, Schaab G, Seidensticker J, Siaka A, Silman MR, Smith TB, De Almeida SS, Sodhi N, Stanford C, Stewart K, Stokes E, Stoner KE, Sukumar R, Surbeck M, Tobler M, Tscharntke T, Turkalo A, Umapathy G, Van Weerd M, Vega Rivera J, Venkataraman M, Venn L, Verea C, Volkmer De Castilho C, Waltert M, Wang B, Watts D, Weber W, West P, Whitacre D, Whitney K, Wilkie D, Williams S, Wright DD, Wright P, Xiankai L, Yonzon P, Zamzani F (2012) Averting biodiversity collapse in tropical forest protected areas. Nature 489: 290–293. https://doi.org/10.1038/nature11318

    Article  CAS  PubMed  Google Scholar 

  • Lima SL (1998) Nonlethal effects in the ecology of predator–prey interactions. Bioscience 48:25–34

    Google Scholar 

  • Lima SL, Bednekoff PA (1999) Temporal variation in danger drives antipredator behavior: the predation risk allocation hypothesis. Am Nat 153:649–659

    PubMed  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640

    Google Scholar 

  • Mech SG, Zollner PA (2002) Using body size to predict perceptual range 98:47–52

    Google Scholar 

  • Melián CJ, Bascompte J (2002) Food web structure and habitat loss. Ecol Lett 5:37–46

    Google Scholar 

  • Mortelliti A, Amori G, Boitani L (2010) The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia 163:535–547

    PubMed  Google Scholar 

  • Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J, De Palma A, Díaz S, Echeverria-Londoño S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DLP, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, MacE GM, Scharlemann JPW, Purvis A (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50. https://doi.org/10.1038/nature14324

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) vegan: Community Ecology Package, R package version 2.4-4

  • Olff H, Ritchie ME (1998) Importance of herbivore type and scale. Trends Ecol Evol 13:261–265

    CAS  PubMed  Google Scholar 

  • Orrock JL, Grabowski JH, Pantel JH, Peacor SD, Peckarsky BL, Sih A, Werner EE (2008) Consumptive and nonconsumptive effects of predators on metacommunities of competing prey. Ecology 89:2426–2435

    PubMed  Google Scholar 

  • Orrock JL, Preisser EL, Grabowski JH, Trussell GC (2013) The cost of safety: refuges increase the impact of predation risk in aquatic systems. Ecology 94:573–579

    PubMed  Google Scholar 

  • Paton PWC (1994) The effect of edge on avian nest success: how strong is the evidence? Conserv Biol 8:17–26

    Google Scholar 

  • Preisser EL, Bolnick DI, Benard MF (2005) Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86:501–509

    Google Scholar 

  • Preisser EL, Orrock JL (2012) The allometry of fear: interspecific relationships between body size and response to predation risk. Ecosphere 3:77

    Google Scholar 

  • Prevedello JA, Gotelli NJ, Metzger JP (2016) A stochastic model for landscape patterns of biodiversity. Ecol Monogr 86:462–479

    Google Scholar 

  • Ries L, Fletcher RJ, Battin J, Sisk TD (2004) ecological responses to habitat edges: mechanisms, models, and variability explained. Annu Rev Ecol Syst 35:491–522

    Google Scholar 

  • Ripple WJ, Beschta RL (2004) Wolves and the ecology of fear: can predation risk structure ecosystems? Bioscience 54:755

    Google Scholar 

  • Ripple WJ, Larsen EJ, Renkin RA, Smith DW (2001) Trophic cascades among wolves, elk and aspen on Yellowstone National Park’s northern range. Biol Conserv 102:227–234

    Google Scholar 

  • Robertson BA, Hutto RL (2006) A framework for understanding ecological traps and an evaluation of existing evidence. Ecology 87:1075–1085

    PubMed  Google Scholar 

  • Ryall KL, Fahrig L (2006) Response of predators to loss and fragmentation of prey habitat: a review of theory. Ecology 87:1086–1093

    PubMed  Google Scholar 

  • Saupe D (1988) Algorithms for random fractals. In: Peitgen H-O, Saupe D (eds) The science of fractal images. Springer, New York, pp 71–136

    Google Scholar 

  • Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V, Lamoreux J, Rodrigues ASL, Stuart SN, Temple HJ, Baillie J, Boitani L, Jr, TEL, Mittermeier RA, Smith AT, Absolon D, Aguiar JM, Amori G, Bakkour N, Baldi R, Berridge RJ, Bielby J, Black PA, Blanc JJ, Brooks TM, Burton JA, Butynski TM, Catullo G, Garshelis DL, Gates C, Gimenez-dixon M, Gonzalez S, Gonzalez-maya JF, Good TC, Hammerson G, Hammond PS, Happold D, Happold M, Hare J, Harris RB, Hawkins CE, Haywood M, Heaney LR, Hedges S, Helgen KM, Hilton-taylor C, Hussain SA, Ishii N, Jefferson TA, Jenkins RKB, Johnston CH, Keith M, Kingdon J, Knox DH, Kovacs KM, Langhammer P, Leus K, Lewison R, Lichtenstein G, Lowry LF, Macavoy Z, Medellín RA, Medici P, Mills G, Moehlman PD, Molur S, Mora A, Nowell K, Oates JF, Olech W, Oliver WRL, Oprea M, Patterson BD, Perrin WF, Polidoro BA, Pollock C, Powel A, Protas Y, Racey P, Ragle J, Ramani P, Rathbun G, Reeves RR, Reilly SB, Iii JER, Rondinini C, Rosell-ambal RG, Rulli M, Rylands AB, Savini S, Schank CJ, Sechrest W, Self-sullivan C, Shoemaker A, Sillero-zubiri C, De Silva N, Smith DE, Taylor BL, Timmins R, Tirira DG, Tognelli MF, Tsytsulina K, Veiga LM, Vié J, Williamson EA, Wyatt SA, Xie Y, Young BE (2008) The status of the World’s land and marine mammals: diversity, threat, and knowledge. Science 322:225–30

    CAS  PubMed  Google Scholar 

  • Schlaepfer MA, Runge MC, Sherman PW (2002) Ecological and evolutionary traps. Trends Ecol Evol 17:474–480

    Google Scholar 

  • Schmitz OJ, Krivan V, Ovadia O (2004) Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol Lett 7:153–163

    Google Scholar 

  • Schneider MF (2001) Habitat loss, fragmentation and predator impact: spatial implications for prey conservation. J Appl Ecol 38:720–735

    Google Scholar 

  • Spencer RJ, Cavanough VC, Baxter GS, Kennedy MS (2005) Adult free zones in small mammal populations: response of Australian native rodents to reduced cover. Austral Ecol 30:868–876

    Google Scholar 

  • Summerville KS, Crist TO (2004) Contrasting effects of habitat quantity and quality on moth communities in fragmented landscapes. Ecography (Cop) 27:3–12

    Google Scholar 

  • Swihart RK, Feng Z, Slade NA, Mason DM, Gehring TM (2001) Effects of habitat destruction and resource supplementation in a predator–prey metapopulation model. J Theor Biol 210:287–303. https://doi.org/10.1006/jtbi.2001.2304

    Article  CAS  PubMed  Google Scholar 

  • Teckentrup L, Grimm V, Kramer-Schadt S, Jeltsch F (2018) Community consequences of foraging under fear. Ecol Modell 383:80–90

    Google Scholar 

  • Thornton DH, Fletcher RJ (2014) Body size and spatial scales in avian response to landscapes: a meta-analysis. Ecography (Cop) 37:454–463

    Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    PubMed  Google Scholar 

  • Tylianakis JM, Laliberté E, Nielsen A, Bascompte J (2010) Conservation of species interaction networks. Biol Conserv 143:2270–2279

    Google Scholar 

  • Urban MC (2007) Predator size and phenology shape prey survival in temporary ponds. Oecologia 154:571–580

    PubMed  Google Scholar 

  • Valiente-Banuet A, Aizen MA, Alcántara JM, Arroyo J, Cocucci A, Galetti M, García MB, García D, Gómez JM, Jordano P, Medel R, Navarro L, Obeso JR, Oviedo R, Ramírez N, Rey PJ, Traveset A, Verdú M, Zamora R (2015) Beyond species loss: The extinction of ecological interactions in a changing world. Funct Ecol 29:299–307. https://doi.org/10.1111/1365-2435.12356

    Article  Google Scholar 

  • Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36:1–48

    Google Scholar 

  • Wallgren M, Skarpe C (2009) Mammal community structure in relation to disturbance and resource gradients in southern Africa. Afr J Ecol 47:20–31

    Google Scholar 

  • Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100

    Google Scholar 

  • Whittaker RH (1975) Communities and ecosystems. Macmillan, New York

    Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York

    Google Scholar 

  • Wilensky U (1999) NetLogo. http://ccl.northwestern.edu/netlogo/. Center for connected learning and computer-based modeling. Northwestern University, Evanston

  • Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B Stat Methodol 73:3–36

    Google Scholar 

  • Wood SN (2017) Generalized additive models: an introduction with R, 2nd edn. Chapman and Hall/CRC, London

    Google Scholar 

  • Zanette LY, White AF, Allen MC, Clinchy M (2011) Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334:1398–1401

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Volker Grimm for comments on an earlier version of this manuscript. This work was supported by Deutsche Forschungsgemeinschaft in the framework of the BioMove Research Training Group (DFG-GRK 2118/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Teckentrup.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 174 kb)

Supplementary material 2 (DOCX 439 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teckentrup, L., Kramer-Schadt, S. & Jeltsch, F. The risk of ignoring fear: underestimating the effects of habitat loss and fragmentation on biodiversity. Landscape Ecol 34, 2851–2868 (2019). https://doi.org/10.1007/s10980-019-00922-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-019-00922-8

Keywords

Navigation