Skip to main content

Advertisement

Log in

A methodology for relating wetland configuration to human disturbance in Alberta

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Widespread loss of wetland ecosystems resulting from human land use highlights the need for a reclamation strategy that can sustain wetland ecosystem services. Since wetland function partly depends on landscape structure, reclamation and monitoring can be aided by knowing the differences in wetland configuration between undisturbed and disturbed landscapes.

Objectives

Identify a parsimonious set of landscape metrics for quantifying wetland configuration and land-cover composition, and quantify how these metrics vary with anthropogenic disturbance.

Methods

A large suite of landscape metrics quantifying area/edge, shape, aggregation, and diversity were calculated for landscapes in the Grassland, Parkland, and Boreal Natural Regions of Alberta. Variable reduction techniques were applied to identify representative metrics. These representative metrics were related to anthropogenic disturbance using non-parametric tests.

Results

The spatial configuration of wetlands in low-disturbance and high-disturbance landscapes were significantly different from other landscapes. Aggregation metrics were the most commonly identified measures of wetland configuration independent of wetland-proportion in the landscape.

Conclusions

Our findings provide insight for reclamation and monitoring by showing that some aspects of wetland configuration vary independently of composition, and therefore both need to be considered when parameterizing the design of reclaimed landscapes. We suggest that using landscape metrics in a reference condition approach is appropriate for evaluating landscape degradation and for setting landscape reclamation targets and monitoring programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abella SR, Denton CW (2009) Spatial variation in reference conditions: historical tree density and pattern on a Pinus ponderosa landscape. Can J For Res 39:2391–2403

    Article  Google Scholar 

  • Albert DA, Minc LD (2004) Plants as regional indicators of Great Lakes coastal wetland health. Aquat Ecosyst Health Manage 7(2):233–247

    Article  Google Scholar 

  • Alberta Sustainable Resource Development (2011) Grassland vegetation inventory (GVI) specifications

  • Babbitt KJ (2005) The relative importance of wetland size and hydroperiod for amphibians in southern New Hampshire, USA. Wetl Ecol Manag 13(3):269–279

    Article  Google Scholar 

  • Bailey RC, Norris RH, Reynoldson TB (2004) Bioassessment of freshwater ecosystems: using the reference condition approach. Springer, New York

    Book  Google Scholar 

  • Bailey D, Herzog F, Augenstein I, Aviron S, Billeter R, Szerencsits E, Baudry J (2007) Thematic resolution matters: indicators of landscape pattern for European agro-ecosystems. Ecol Ind 7(3):692–709

    Article  Google Scholar 

  • Belyea LR, Malmer N (2004) Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Glob Change Biol 10(7):1043–1052

    Article  Google Scholar 

  • Bowman MF, Somers KM (2005) Considerations when using the reference condition approach for bioassessment of freshwater ecosystems. Water Qual Res J Can 40(3):347–360

    CAS  Google Scholar 

  • Brander L, Brouwer R, Wagtendonk A (2013) Economic valuation of regulating services provided by wetlands in agricultural landscapes: a meta-analysis. Ecol Eng 56:89–96

    Article  Google Scholar 

  • Brazner JC, Danz NP, Niemi GJ, Regal RR, Trebitz AS, Howe RW, Sgro G (2007) Evaluation of geographic, geomorphic and human influences on Great Lakes wetland indicators: a multi-assemblage approach. Ecol Ind 7(3):610–635

    Article  Google Scholar 

  • Brooks RP, Wardrop DH, Cole CA, Campbell DA (2005) Are we purveyors of wetland homogeneity? A model of degradation and restoration to improve wetland mitigation performance. Ecol Eng 24(4):331–340

    Article  Google Scholar 

  • Brown DG, Duh J-D (2004) Spatial simulation for translating from land use to land cover. Int J Geogr Inf Sci 18(1):35–60

    Article  Google Scholar 

  • Catallo WJ (1993) Ecotoxicology and wetland ecosystems: current understanding and future needs. Environ Toxicol Chem 12:2209–2224

    Article  CAS  Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles 17(4):1111

    Article  Google Scholar 

  • Cohen MJ, Creed IF, Alexander L, Basu NB, Calhoun AJK, Craft C, Walls S (2016) Do geographically isolated wetlands influence landscape functions? Proc Natl Acad Sci USA 113(8):1–9

    Article  Google Scholar 

  • Cozzi G, Müller CB, Krauss J (2008) How do local habitat management and landscape structure at different spatial scales affect fritillary butterfly distribution on fragmented wetlands? Landscape Ecol 23(3):269–283

    Article  Google Scholar 

  • Cushman SA, McGarigal K, Neel MC (2008) Parsimony in landscape metrics: strength, universality, and consistency. Ecol Ind 8(5):691–703

    Article  Google Scholar 

  • Dale MRT, Fortin M-J (2002) Spatial autocorrelation and statistical tests in ecology. Ecoscience 9(2):162–167

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • Dawson TP, Berry PM, Kampa E (2003) Climate change impacts on freshwater wetland habitats. J Nat Conserv 30:25–30

    Article  Google Scholar 

  • de Groot R, Brander L, van der Ploeg S, Costanza R, Bernard F, Braat L, van Beukering P (2012) Global estimates of the value of ecosystems and their services in monetary units. Ecosyst Serv 1(1):50–61

    Article  Google Scholar 

  • DeFries RS, Foley JA, Asner GP (2004) Land-use choices: balancing human needs and ecosystem function. Front Ecol Environ 2(5):249–257

    Article  Google Scholar 

  • Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30(5):609–628

    Article  Google Scholar 

  • Downing DJ, Pettapiece WW (2006) Natural Regions and Subregions of Alberta. Edmonton, Alberta. http://www.cd.gov.ab.ca/preserving/parks/anhic/Natural_region_report.asp

  • Duh J-D, Brown DG (2007) Knowledge-informed Pareto simulated annealing for multi-objective spatial allocation. Comput Environ Urban Syst 31(3):253–281

    Article  Google Scholar 

  • Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6(3):241–252

    Article  Google Scholar 

  • Foley JA, Defries RS, Asner GP, Barford C, Bonan G, Carpenter SR, Snyder P (2005) Global consequences of land use. Science 309(5734):570–574

    Article  CAS  PubMed  Google Scholar 

  • Galatowitsch SM, van der Valk AG (1996) Vegetation and environmental conditions in recetnly restored wetlands in the prairie pothole region of the USA. Vegetation 126(1):89–99

    Google Scholar 

  • Haig SM, Mehlman DW, Oring LW (1998) Avian moviments and wetland connectivity in landscape conservation. Conserv Biol 12(4):749–758

    Article  Google Scholar 

  • Hawkins CP, Cao Y, Roper B (2010a) Method of predicting reference condition biota affects the performance and interpretation of ecological indices. Freshw Biol 55(5):1066–1085

    Article  Google Scholar 

  • Hawkins CP, Olson JR, Hill RA (2010b) The reference condition: predicting benchmarks for ecological and water-quality assessments. J N Am Benthol Soc 29(1):312–343

    Article  Google Scholar 

  • Herzog F, Lausch A, Thulke H-H, Steinhardt U, Lehmann S (2001) Landscape metrics for assessment of landscape destruction and rehabilitation. Environ Manag 27(1):91–107

    Article  CAS  Google Scholar 

  • Hessburg PF, Reynolds KM, Salter RB, Richmond MB (2004) Using a decision support system to estimate departures of present forest landscape patterns from historical reference condition: An example from the inland northwest region of the United States. In: Perera AH, Buse LJ, Weber MG (eds) Emulating natural forest landscape disturbances: concepts and applications. Columbia University Press, New York, pp 158–175

    Google Scholar 

  • Higgins KF (1977) Duck nesting in intensively farmed areas of North Dakota. J Wildl Manag 41(2):232–242 http://www.jstor.org/stable/3800600

  • Houlahan JE, Keddy PA, Makkay K, Findlay CS (2006) The effects of adjacent land use on wetland species richness and community composition. Wetlands 26(1):79–96

    Article  Google Scholar 

  • Johnson CR, Chabot RH, Marzloff MP, Wotherspoon S (2016) Knowing when (not) to attempt ecological restoration. Restor Ecol. doi:10.1111/rec.12413

    Google Scholar 

  • Karr JR (1991) Biological integrity: a long-neglected aspect of water resource management. Ecol Appl 1(1):66–84 http://www.jstor.org/stable/1941848

  • Kayranli B, Scholz M, Mustafa A, Hedmark Å (2010) Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands 30(1):111–124

    Article  Google Scholar 

  • Keane RE, Parsons RA, Hessburg PF (2002) Estimating historical range and variation of landscape patch dynamics: limitations of the simulation approach. Ecol Model 151(1):29–49

    Article  Google Scholar 

  • Keane RE, Hessburg PF, Landres PB, Swanson FJ (2009) The use of historical range and variability (HRV) in landscape management. For Ecol Manag 258(7):1025–1037

    Article  Google Scholar 

  • Kennard MJ, Harch BD, Pusey BJ, Arthington AH (2006) Accurately defining the reference condition for summary biotic metrics: a comparison of four approaches. Hydrobiologia 572(1):151–170

    Article  Google Scholar 

  • Kindscher K, Fraser A, Jakubauskas ME, Debinski DM (1998) Identifying wetland meadows in Grand Teton National Park using remote sensing and average wetland values. Wetl Ecol Manag 5:265–273

    Article  Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583–621

    Article  Google Scholar 

  • Landres PB, Morgan P, Swanson FJ (1999) Overview of the use of natural variability concepts in managing ecological systems. Ecol Appl 9(4):1179–1188

    Google Scholar 

  • Leibowitz SG (2003) Isolated wetlands and their functions: an ecological perspective. Wetlands 23(3):517–531

    Article  Google Scholar 

  • Leitão AB, Ahern J (2002) Applying landscape ecological concepts and metrics in sustainable landscape planning. Landsc Urban Plan 59(2):65–93

    Article  Google Scholar 

  • Li Y, Zhu X, Sun X, Wang F (2010) Landscape effects of environmental impact on bay-area wetlands under rapid urban expansion and development policy: a case study of Lianyungang, China. Landsc Urban Plan 94(3–4):218–227

    Article  Google Scholar 

  • Liu AJ, Cameron GN (2001) Analysis of landscape patterns in coastal wetlands of Galveston Bay, Texas (USA). Landscape Ecol 16(7):581–595

    Article  Google Scholar 

  • Long JA, Nelson TA, Wulder MA (2010) Characterizing forest fragmentation: distinguishing change in composition from configuration. Appl Geogr 30(3):426–435

    Article  Google Scholar 

  • Lopez RD, Davis CB, Fennessy MS (2002) Ecological relationships between landscape change and plant guilds in depressional wetlands. Landscape Ecol 17(1):43–56

    Article  Google Scholar 

  • Mack JJ (2006) Landscape as a predictor of wetland condition: an evaluation of the landscape development index (LDI) with a large reference wetland dataset from Ohio. Environ Monit Assess 120(1–3):221–241

    Article  PubMed  Google Scholar 

  • Mairota P, Cafarelli B, Boccaccio L, Leronni V, Labadessa R, Kosmidou V, Nagendra H (2013) Using landscape structure to develop quantitative baselines for protected area monitoring. Ecol Ind 33:82–95

    Article  Google Scholar 

  • Marton JM, Creed IF, Lewis DB, Lane CR, Basu NB, Cohen MJ, Craft CB (2015) Geographically isolated wetlands are important biogeochemical reactors on the landscape. Bioscience 65(4):408–418

    Article  Google Scholar 

  • McGarigal K (2014) Fragstats Help. University of Massachusetts, Amherst

    Google Scholar 

  • McGarigal K, McComb WC (1995) Relationships between landscape structure and breeding birds in the Oregon coast range. Ecol Monogr 65(3):235–260

    Article  Google Scholar 

  • McGarigal K, Cushman S, Ene E (2012) FRAGSTATS v4: Spatial pattern analysis program for categorical and continuous maps. University of Massachusetts, Amherst

    Google Scholar 

  • Metzger MJ, Bunce RGH, Jongman RHG, Sayre R, Trabucco A, Zomer R (2013) A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Glob Ecol Biogeogr 22(5):630–638

    Article  Google Scholar 

  • Mita D, DeKeyser E, Kirby D, Easson G (2007) Developing a wetland condition prediction model using landscape structure variability. Wetlands 27(4):1124–1133

    Article  Google Scholar 

  • Mladenoff DJ, Niemi GJ, White MA (1997) Effects of changing landscape pattern and USGS land cover data variability on ecoregion discrimination across a forest-agriculture gradient. Landscape Ecol 12:379–396

    Article  Google Scholar 

  • Moreno-Mateos D, Mander U, Comín FA, Pedrocchi C, Uuemaa E (2008) Relationships between landscape pattern, wetland characteristics, and water quality in agricultural catchments. J Environ Qual 37(6):2170–2180

    Article  CAS  PubMed  Google Scholar 

  • Naveh Z, Lieberman AS (1984) Landscape ecology: theory and application. Springer, New York

    Google Scholar 

  • Neel MC, McGarigal K, Cushman SA (2004) Behavior of class-level landscape metrics across gradients of class aggregation and area. Landscape Ecol 19(4):435–455

    Article  Google Scholar 

  • Overmars KP, De Koning GHJ, Veldkamp A (2003) Spatial autocorrelation in multi-scale land use models. Ecol Model 164(2–3):257–270

    Article  Google Scholar 

  • Pardo I, Gómez-Rodríguez C, Wasson JG, Owen R, van de Bund W, Kelly M, Ofenböeck G (2012) The European reference condition concept: a scientific and technical approach to identify minimally-impacted river ecosystems. Sci Total Environ 420:33–42

    Article  CAS  PubMed  Google Scholar 

  • R Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.r-project.org/

  • Remmel TK, Csillag F (2003) When are two landscape pattern indices significantly different? J Geogr Syst 5(4):331–351

    Article  Google Scholar 

  • Renard P, Demougeot H, Froidevaus R (2005) Geostatistics for environmental applications. Springer, New York

    Book  Google Scholar 

  • Reynoldson TB, Norris RH, Resh VH, Day KE, Rosenberg DM (1997) The reference condition: A comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. J N Am Benthol Soc 16(4):833–852 http://www.jstor.org/stable/1468175

  • Riitters KH, O’Neill RV, Hunsaker CT, Wickham JD, Yankee DH, Timmins SP, Jackson BL (1995) A factor analysis of landscape pattern and structure metrics. Landscape Ecol 10(1):23–39

    Article  Google Scholar 

  • Rooney RC, Bayley SE (2011) Relative influence of local- and landscape-level habitat quality on aquatic plant diversity in shallow open-water wetlands in Alberta’s boreal zone: direct and indirect effects. Landscape Ecol 26:1023–1034

    Article  Google Scholar 

  • Rooney RC, Bayley SE, Creed IF, Wilson MJ (2012) The accuracy of land cover-based wetland assessments is influenced by landscape extent. Landscape Ecol 27(9):1321–1335

    Article  Google Scholar 

  • Rooney RC, Robinson DT, Petrone R (2015) Megaproject reclamation and climate change. Nat Clim Change 5(11):963–966

    Article  Google Scholar 

  • Ruddiman WF (2013) The Anthropocene. Annu Rev Earth Planet Sci 41(1):45–68

    Article  CAS  Google Scholar 

  • Schneider RR (2013) Alberta’s natural subregions under a changing climate: past, present and future. http://www.biodiversityandclimate.abmi.ca/docs/Schneider_2013_AlbertaNaturalSubregionsUnderaChangingClimate_ABMI.pdf

  • Skinner R, Sheldon F, Walker KF (2001) Propagules in dry wetland sediments as indicators of ecological health: Effects of salinity. Regul Rivers-Res Manag 17:191–197

    Article  Google Scholar 

  • Society for Ecological Restoration Science & Policy Working Group (2002) The SER primer on ecological restoration. www.ser.org/

  • Stephens SE, Rotella JJ, Lindberg MS, Taper ML, Ringelman K (2005) Duck nest survival in the Missouri coteau of North Dakota: landscape effects at multiple spatial scales. Ecol Appl, 15(6):2137–2149. http://www.jstor.org/stable/4543511

  • Stewart RE, Kantrud HA (1971) Classification of natural ponds and lakes in the glaciated prairie region. Washington D.C.: Bureau of Sport Fisheries and Wildlife. http://esrd.alberta.ca/lands-forests/shorelands/documents/ClassificationPondsLakesPrairie-Part1.pdf

  • Stoddard JL, Larsen DP, Hawkins CP, Johnson RK, Norris RH (2006) Setting expectations for the ecological condition of streams: the concept of reference condition. Ecol Appl 16(4):1267–1276

    Article  PubMed  Google Scholar 

  • Suding KN, Hobbs RJ (2009) Threshold models in restoration and conservation: a developing framework. Trends Ecol Evol 24(5):271–279

    Article  PubMed  Google Scholar 

  • Sugden LG, Beyersbergen GW (1984) Farming intensity on waterfowl breeding grounds in Saskatchewan parklands. Wildl Soc Bull 12(1):22–26

    Google Scholar 

  • Tonn WM, Paszkowski CA, Scrimgeour GJ, Aku PKM, Prepas EE, Westcott K (2011) Effects of forest harvesting and fire on fish assemblages in boreal plains lakes: a reference condition approach. Trans Am Fish Soc 132(3):514–523

    Article  Google Scholar 

  • Turner MG, O'Neill RV, Gardner RH, Milne BT (1989) Effects of changing spatial scale on the analysis of landscape pattern. Landscape Ecol 3(3–4):153–162

    Article  Google Scholar 

  • Uzarski DG, Burton TM, Cooper MJ, Ingram JW, Timmermans STA (2005) Fish habitat use within and across wetland classes in coastal wetlands of the five Great Lakes: development of a fish-based index of biotic integrity. J Great Lakes Res 31(SUPPL. 1):171–187

    Article  Google Scholar 

  • Vitt DH, Halsey LA, Bauer IE, Campbell C (2000) Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene. Can J Earth Sci 37(5):683–693

    Article  CAS  Google Scholar 

  • Wilcox BP, Dean DD, Jacob JS, Sipocz A (2011) Evidence of surface connectivity for Texas Gulf Coast depressional wetlands. Wetlands 31(3):451–458

    Article  Google Scholar 

  • Woodward RT, Wui Y-S (2001) The economic value of wetland services: a meta-analysis. Ecol Econ 37:257–270

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by Alberta Innovates—Energy and Environment Solutions grant #2094, and the National Science and Engineering Research Council—Canadian Graduate Scholarships—Master’s Program. We also thank Shane Patterson for helping us access relevant geospatial data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian S. Evans.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, I.S., Robinson, D.T. & Rooney, R.C. A methodology for relating wetland configuration to human disturbance in Alberta. Landscape Ecol 32, 2059–2076 (2017). https://doi.org/10.1007/s10980-017-0566-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-017-0566-z

Keywords

Navigation