Skip to main content

Advertisement

Log in

Dispersal traits determine plant response to habitat connectivity in an urban landscape

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Identification of trait syndromes that make species vulnerable to habitat fragmentation is essential in predicting biodiversity change. Plants are considered particularly vulnerable if their capacities for persistence in and for dispersal among local habitats are low. Here we investigated the influence of easily measured functional traits on the presence of 45 plant species in an urban landscape in north-west Germany where patches were separated by distances consistent with regular plant dispersal range. To describe the spatial configuration of patches we calculated species-specific patch connectivities. Then we assessed plant connectivity responses in distribution models calculated from connectivities and environmental predictors. Twenty (45%) of the analysed species showed a positive connectivity response after accounting for species-specific habitat requirements. These species differed from non-responsive species by functional traits associated with dispersal, including reduced seed numbers and higher terminal velocities relative to non-responsive species. Persistence traits played however no role which we attribute to the environmental conditions of urban habitats and their spatiotemporal characteristics. Our study underlines that even ruderal plants experience dispersal limitation and demonstrates that easily measured functional traits may be used as indicators of fragmentation vulnerability in urban systems allowing generalizations to larger species sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Askew AP, Corker D, Hodkinson DJ, Thompson K (1997) A new apparatus to measure the rate of fall of seeds. Funct Ecol 11:121–125

    Article  Google Scholar 

  • Bastin L, Thomas CD (1999) The distribution of plant species in urban vegetation fragments. Landscape Ecol 14:493–507

    Article  Google Scholar 

  • Bekker RM, Bakker JP, Grandin U, Kalamees R, Milberg P, Poschlod P, Thompson K, Willems JH (1998) Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Funct Ecol 12:834–842

    Article  Google Scholar 

  • Bossuyt B, Honnay O (2006) Interactions between plant life span, seed dispersal capacity and fecundity determine metapopulation viability in a dynamic landscape. Landscape Ecol 21:1195–1205

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Butaye J, Jacquemyn H, Hermy M (2001) Differential colonization causing non-random forest plant community structure in a fragmented agricultural landscape. Ecography 24:369–380

    Article  Google Scholar 

  • Cain ML, Milligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. Am J Bot 87:1217–1227

    Article  PubMed  Google Scholar 

  • Campbell BD, Grime JP (1992) An experimental test of plant strategy theory. Ecology 73:15–29

    Article  Google Scholar 

  • Crowley PH, McLetchie DN (2002) Trade-offs and spatial life-history strategies in classical metapopulations. Am Nat 159:190–208

    Article  PubMed  Google Scholar 

  • Deutscher Wetterdienst 2006/2007. Mittelwerte des Niederschlags und der Temperatur für den Zeitraum 1961–1990

  • Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304

    Google Scholar 

  • Dirnböck T, Dullinger S (2004) Habitat distribution models, spatial autocorrelation, functional traits and dispersal capacity of alpine plant species. J Veg Sci 15:77–84

    Article  Google Scholar 

  • Dormann C, McPherson J, Araújo M, Bivand R, Boilliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling W, Kühn I, Ohlemüller R, Peres-Neto P, Reineking B, Schröder B, Schurr F, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Article  Google Scholar 

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493

    Article  Google Scholar 

  • Dupré C, Ehrlén J (2002) Habitat configuration, species traits and plant distributions. J Ecol 90:796–805

    Article  Google Scholar 

  • Ehrlén J, Münzbergová Z, Diekmann M, Eriksson O (2006) Long-term assessment of seed limitation in plants: results from an 11-year experiment. J Ecol 94:1224–1232

    Article  Google Scholar 

  • Ellenberg H (1986) Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht. Ulmer, Stuttgart

    Google Scholar 

  • ESRI Inc. (2006) ArcMapTM version 9.2. Redlands, California

    Google Scholar 

  • Ewers R, Didham R (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fenner M, Thompson K (2004) The ecology of seeds. Cambridge University Press, Cambridge

    Google Scholar 

  • Foster BL (2001) Constraints on colonization and species richness along a grassland productivity gradient: the role of propagule availability. Ecol Lett 4:530–535

    Article  Google Scholar 

  • Freckleton RP, Watkinson AR (2001) Nonmanipulative determination of plant community dynamics. Trends Ecol Evol 16:301–307

    Article  PubMed  Google Scholar 

  • Freckleton RP, Watkinson AR (2002) Large-scale spatial dynamics of plants: metapopulations, regional ensembles and patchy populations. J Ecol 90:419–434

    Article  Google Scholar 

  • Gilbert B, Lechowicz MJ (2004) Neutrality, niches, and dispersal in a temperate forest understory. PNAS 101:7651–7656

    Article  PubMed  CAS  Google Scholar 

  • Girdler EB, Barrie BTC (2008) The scale-dependent importance of habitat factors and dispersal limitation in structuring Great Lakes shoreline plant communities. Plant Ecol 198:211–223

    Article  Google Scholar 

  • Goldberg DE, Barton AM (1992) Patterns and consequences of interspecific competition in natural communities—a review of field experiments with plants. Am Nat 139:771–801

    Article  Google Scholar 

  • Grashof-Bokdam CJ, Geertsema W (1998) The effect of isolation and history on colonization patterns of plant species in secondary woodland. J Biogeogr 25:837–846

    Article  Google Scholar 

  • Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87:2603–2613

    Article  PubMed  Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (1989) Comparative plant ecology: a functional approach to common British species. Unwin Hyman, London

    Google Scholar 

  • Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162

    Article  Google Scholar 

  • Helm A, Hanski I, Pärtel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77

    PubMed  Google Scholar 

  • Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251

    Article  Google Scholar 

  • Hérault B, Honnay O (2005) The relative importance of local, regional and historical factors determining the distribution of plants in fragmented riverine forests: an emergent group approach. J Biogeogr 32:2069–2081

    Article  Google Scholar 

  • Higgins SI, Nathan R, Cain ML (2003) Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal? Ecology 84:1945–1956

    Article  Google Scholar 

  • Jäger EJ, Werner K (2002) Rothmaler Exkursionsflora von Deutschland. Gefäßpflanzen: Kritischer Band. Spektrum Akademischer Verlag, Heidelberg Berlin

  • Johst K, Brandl R, Eber S (2002) Metapopulation persistence in dynamic landscapes: the role of dispersal distance. Oikos 98:263–270

    Article  Google Scholar 

  • Kattwinkel M, Strauss B, Biedermann R, Kleyer M (2009) Modelling multi-species response to landscape dynamics: mosaic cycles support urban biodiversity. Landscape Ecol 24:929–941

    Article  Google Scholar 

  • Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimeš L, Klimešová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Endels P, Götzenberger L, Hodgson JG, Jackel A-K, Dannemann A, Kühn I, Kunzmann D, Ozinga WA, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Fitter A, Peco B (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274

    Article  Google Scholar 

  • Kolb A, Diekmann M (2005) Effects on life-history traits on responses of plant species to forest fragmentation. Conserv Biol 19:929–938

    Article  Google Scholar 

  • Krauss J, Klein AM, Steffan-Dewenter I, Tscharntke T (2004) Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodivers Conserv 13:1427–1439

    Article  Google Scholar 

  • Legendre P, Legendre L (2006) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145

    Article  Google Scholar 

  • Nathan R (2006) Long-distance dispersal of plants. Science 313:786–788

    Article  PubMed  CAS  Google Scholar 

  • Nathan R, Katul GG, Horn HS, Thomas SM, Oren R, Avissar R, Pacala SW, Levin SA (2002) Mechanisms of long-distance dispersal of seeds by wind. Nature 418:409–413

    Article  PubMed  CAS  Google Scholar 

  • Nathan R, Schurr FM, Spiegel O, Steinitz O, Trakhtenbrot A, Tsoar A (2008) Mechanisms of long-distance seed dispersal. Trends Ecol Evol 23:638–647

    Article  PubMed  Google Scholar 

  • Ozinga WA, Bekker RM, Schminée JHJ, van Groenendael JM (2004) Dispersal potential in plant communities depends on environmental conditions. J Ecol 92:767–777

    Article  Google Scholar 

  • Ozinga WA, Römermann C, Bekker RM, Prinzing A, Tamis WLM, Schaminée JHJ, Hennekens SM, Thompson K, Poschlod P, Kleyer M, Bakker JP, van Groenendael JM (2009) Dispersal failure contributes to plant losses in NW Europe. Ecol Lett 12:66–74

    Article  PubMed  Google Scholar 

  • Piessens K, Honnay O, Hermy M (2005) The role of fragment area and isolation in the conservation of heathland species. Biol Conserv 122:61–69

    Article  Google Scholar 

  • Prugh LR, Hodges KE, Sinclair ARE, Brashares JS (2008) Effect of habitat area and isolation on fragmented animal populations. PNAS 105:20770–20775

    Article  PubMed  CAS  Google Scholar 

  • Schadek U (2006) Plants in urban brownfields: modelling the driving factors of site conditions and of plant functional group occurrence in a dynamic environment. Dissertation, University of Oldenburg

  • Schadek U, Strauss B, Biedermann R, Kleyer M (2009) Plant species richness, vegetation structure and soil resources of urban brownfield sites linked to successional age. Urban Ecosyst Online First 115–126

  • Schaffers AP, Sykora KV (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J Veg Sci 11:225–244

    Article  Google Scholar 

  • Schippers P, van Groenendael JM, Vleeshouwers LM, Hunt R (2001) Herbaceous plant strategies in disturbed habitats. Oikos 95:198–210

    Article  Google Scholar 

  • Soons MB, Nathan R, Katul GG (2004) Human effects on long-distance wind dispersal and colonization by grassland plants. Ecology 85:3069–3079

    Article  Google Scholar 

  • Soons MB, Messlink JH, Jongejans E, Heil GW (2005) Habitat fragmentation reduces grassland connectivity for both short-distance and long-distance wind-dispersed forbs. J Ecol 93:1214–1225

    Article  Google Scholar 

  • SPSS Inc. (2006) SPSS version 15.0.1 for Windows. Chicago, USA

    Google Scholar 

  • Steyerberg EW, Harrell FE, Borsboom GJJM, Eijkemans MJC, Vergouwe Y, Habbema JDF (2001) Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 54:774–781

    Article  PubMed  CAS  Google Scholar 

  • Strauss B, Biedermann R (2006) Urban brownfields as temporary habitats: driving forces for the diversity of phytophagous insects. Ecography 29:928–940

    Article  Google Scholar 

  • Suding KN, Goldberg DE, Hartman KM (2003) Relationships among species traits: separating levels of response and identifying linkages to abundance. Ecology 84:1–16

    Article  Google Scholar 

  • Tackenberg O, Poschlod P, Bonn S (2003) Assessment of wind dispersal potential in plant species. Ecol Monogr 73:191–205

    Article  Google Scholar 

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66

    Article  Google Scholar 

  • Tremlová K, Münzbergová Z (2007) Importance of species traits for species distribution in fragmented landscapes. Ecology 88:965–977

    Article  PubMed  Google Scholar 

  • Verheyen K, Vellend M, van Calster H, Peterken G, Hermy M (2004) Metapopulation dynamics in changing landscapes: a new spatially realistic model for forest plants. Ecology 85:3302–3312

    Article  Google Scholar 

  • Vos CC, Verboom J, Opdam PFM, ter Braak CJF (2001) Toward ecologically scaled landscape indices. Am Nat 157:24–41

    Article  PubMed  CAS  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159

    Article  Google Scholar 

Download references

Acknowledgments

This study was conducted as part of the collaborative research project ASSEMBLE within the ESF-Eurodiversity Programme (05_EDIV_FP040-ASSEMBLE) and was supported by the German Science Foundation (KL 756/2-1) and the European Science Foundation. We thank H.J. Poethke and N. Mason for useful comments on the manuscript, K. Thompson who did the seed terminal velocity measurements as part of the LEDA project and U. Schadek for providing plant trait data and the many students having assisted in collecting field data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Schleicher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schleicher, A., Biedermann, R. & Kleyer, M. Dispersal traits determine plant response to habitat connectivity in an urban landscape. Landscape Ecol 26, 529–540 (2011). https://doi.org/10.1007/s10980-011-9579-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-011-9579-1

Keywords

Navigation