Abstract
This paper aims to assess the relative importance of the type of built-up area in structuring plant species composition and richness in urbanised environments. The study was carried out in the city of Brussels where all vascular plant species were recorded in 189 grid cells of 1 km2 each. The effect of urban land use type on species composition was investigated using first Canonical Correspondence Analysis. Densely built-up area was the most powerful predictor for species composition, followed by industrial built-up areas, half open or open built-up areas with plantations, and open built-up areas with much natural vegetation in the surroundings. Indicator species were found for each type of built-up area and a response curve to the amount of built land was produced using Generalised Additive Modelling. Various types of built-up areas had different effects on environmental conditions as inferred by Ellenberg’s indicator values, as well as on the species richness, species rarity, number of exotic species and proportion of extinction-prone species. It is concluded that future ecological studies should not treat urban areas as homogeneous areas by combining all anthropogenic factors into one aggregated variable. Instead, the urban matrix should be categorised in subsystems as it is multidimensional and highly variable across space.


Similar content being viewed by others
References
Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Caski F (eds) Proceeding of the second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281
Alberti M, Marzluff JM, Bradley G, Ryan C, Shulenberger E, Zumbrunnen C (2003) Integrating humans into ecology: opportunities and challenges for studying urban ecosystems. Bioscience 53:1169–1179
Austin MP (1999) The potential contribution of vegetation ecology to biodiversity research. Ecography 22:465–484
Austin MP, Meyers JA (1996) Current approaches to modelling the environmental niche of eucalypts: implication for management of forest biodiversity. Forest Ecol Manag 85:95–106
Austin MP, Nicholls AO, Margules CR (1990) Measurement of the realized qualitative niche – environmental niches of 5 eucalyptus species. Ecol Monogr 60:161–177
Bio AMF, Alkemade R, Barendregt A (1998) Determining alternative models for vegetation response analysis: a non-parametric approach. J Veg Sci 9:5–16
Brichau I, Ameeuw G, Gryseels M, Paelinckx D (2000) Biologische Waarderingskaart, versie 2. Kaartbladen 31–39. Mededelingen van het Instituut voor Natuurbehoud 15. IN/BIM, Brussels
Carreiro MM, Howe K, Parkhurst DF, Pouyat RV (1999) Variation in quality and decomposability of red oak leaf litter along an urban-rural gradient. Biol Fert Soils 30:258–268
Chiesura A (2004) The role of urban parks for the sustainable city. Landsc Urban Plan 68:129–138
Cornelis J, Hermy M (2004) Biodiversity relationships in urban and suburban parks in Flanders. Landsc Urban Plan 69:385–401
Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366
Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scrip Geobot 18:1–248
ESRI (1996) ArcView spatial analyst. Advanced spatial analysis using raster and vector data. Environmental Systems Research Institute, Redlands
Gibb H, Hochuli DF (2002) Habitat fragmentation in an urban environment: large and small fragments support different arthropod assemblages. Biol Conserv 106:91–100
Godefroid S, Koedam N (2003a) How important are large vs. small forest remnants for the conservation of the woodland flora in an urban context? Global Ecol Biogeogr 12:287–298
Godefroid S, Koedam N (2003b) Distribution pattern of the flora in a peri-urban forest: an effect of the city-forest ecotone. Landsc Urban Plan 65:169–185
Godefroid S, Koedam N (2004a) Interspecific variation in soil compaction sensitivity among forest floor species. Biol Conserv 119:207–217
Godefroid S, Koedam N (2004b) The impact of forest paths upon adjacent vegetation: effects of the path substrate on the species composition and soil compaction. Biol Conserv 119:405–419
Godefroid S, Rucquoij S, Koedam N (2006) Spatial variability of summer microclimates and vegetation response along transects within clearcuts in a beech forest. Plant Ecol 185:107–121
Godefroid S, Monbaliu D, Koedam N (2007) The role of soil and microclimate variables in the distribution patterns of urban wasteland flora. Landsc Urban Plan 80:45–55
Graae BJ, Sunde PB (2000) The impact of forest continuity and management on forest floor vegetation evaluated by species traits. Ecography 23:720–731
Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties. Wiley, Chichester
Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology. A functional approach to common British species. Unwin-Hyman, London
Grove JM, Burch WR (1997) A social ecology approach and applications of urban ecosystem and landscape analyses: a case study of Baltimore, Maryland. Urban Ecosyt 1:259–275
Grytnes JA, Birks HJB, Peglar SM (1999) Plant species richness in Fennoscandia: evaluating the relative importance of climate and history. Nordic J Bot 19:489–503
Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186
Hastie TJ, Tibshirani RJ (1990) Generalised additive models. Chapman & Hall, London
Heegaard E (2002) A model for alpine species distribution in relation to snowmelt time and altitude. J Veg Sci 13:493–504
Hill MO, Mountford JO, Roy DB, Bunce RGH (1999) Ellenberg’s indicator values for British plants. ECOFACT vol 2, Technical annex. Institute of Terrestrial Ecology, Huntingdon
Honnay O, Degroote B, Hermy M (1998) Ancient-forest plant species in Western Belgium: a species list and possible ecological mechanisms. Belg J Bot 130:139–154
Honnay O, Endels P, Vereecken H, Hermy M (1999) The role of patch area and habitat diversity in explaining native plant species richness in disturbed suburban forest patches in northern Belgium. Divers Distrib 5:129–141
Hope D, Gries C, Zhu W, Fagan WF, Redman CL, Grimm NB, Nelson AL, Martin C, Kinzig A (2003) Socioeconomics drive urban plant diversity. Proc Natl Acad Sci USA 100:8788–8792
IBGE-BIM (1995) Report on the state of the environment in the Brussels Capital Region (in French and Dutch). Les Cahiers de l’IBGE nr. 9. IBGE-BIM, Brussels
Kent M, Stevens RA, Zhang L (1999) Urban plant ecology patterns and processes: a case study of the flora of the city of Plymouth, Devon, UK. J Biogeogr 26:1281–1298
Kinzig AP, Warren P, Martin C, Hope D, Katti M (2005) The effects of human socioeconomic status and cultural characteristics on urban patterns of biodiversity. Ecol Soc 10(1):23 [online]
Koh LP, Sodhi NS (2004) Importance of reserves, fragments, and parks for butterfly conservation in a tropical urban landscape. Ecol Appl 14:1695–1708
Kowarik I (1995) On the role of alien species in urban flora and vegetation. In: Pyšek P, Prach K, Remánek M, Wade M (eds) Plant invasions: general aspects and special problems. SPB Academic Publishing, Amsterdam, pp 85–103
Lambinon J, De Langhe JE, Delvosalle L, Duvigneaud J (1998) Flora van België, het Groothertogdom Luxemburg, Noord-Frankrijk en de aangrenzende gebieden. Nationale Plantentuin van België, Meise
Leps J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge
Lieth H, Berlekamp J, Fuest S, Riediger S (1999) Climate diagram world atlas. CD-series: climate and biosphere. Backuys Publishers, Leiden
Liu J (2001) Integrating ecology with human demography, behavior, and socioeconomics: needs and approaches. Ecol Model 140:1–8
Maurer U, Peschel T, Schmitz S (2000) The flora of selected urban land-use types in Berlin and Potsdam with regard to nature conservation in cities. Landsc Urban Plan 46:209–215
McCune B, Mefford MJ (1997) PC-ORD. Multivariate analysis of ecological data. Version 3.0. MjM Software Design, Gleneden Beach, Oregon, USA
McDonnell MJ, Pickett STA, Groffman P, Bohlen P, Pouyat RV, Zipperer WC, Parmelee RW, Carreiro MM, Medley K (1997) Ecosystem processes along an urban-to-rural gradient. Urban Ecosyst 1:21–36
McIntyre NE, Knowles-Yánez K, Hope D (2000) Urban ecology as an interdisciplinary field: differences in the use of “urban” between the social and natural sciences. Urban Ecosyst 4:5–24
Miller JR, Hobbs RJ (2002) Conservation where people live and work. Conserv Biol 16:330–337
Naveh Z (2000) The total human ecosystem: integrating ecology and economics. BioScience 50:357–361
Orr DW (2002) The nature of design: ecology, culture, and human intention. Oxford University Press, Oxford
Roy DB, Hill MO, Rothery P (1999) Effects of urban land cover on the local species pool in Britain. Ecography 22:507–515
Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. KTK Scientific Publishers, Tokyo
Sala OE, Chapin FS, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774
Spronken-Smith RA, Oke TR (1998) The thermal regime of urban parks in two cities with different summer climates. Int J Remote Sens 19:2085–2104
Statsoft Inc (2001) STATISTICA (data analysis software system). Version 6. Statsoft Inc., Tulsa
Stieperaere H, Fransen K (1982) Standaardlijst van de Belgische vaatplanten, met aanduiding van hun zeldzaamheid en socio-oecologischegroep. Dumortiera 22:1–41
Sukopp H, Blume HP, Kunick W (1979) The soil, flora, and vegetation of Berlin’s waste lands. In: Laurie IC (ed) Nature in cities. Chichester, New-York, pp 115–132
Svensson MK, Eliasson I (2002) Diurnal air temperatures in built-up areas in relation to urban planning. Landsc Urban Plan 61:37–54
ter Braak CJF, Gremmen NJM (1987) Ecological amplitudes of plant species and the internal consistency of Ellenberg’s indicator values for moisture. Vegetatio 69:79–87
ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows. User’s guide: software for canonical ordination (version 4.5). Microcomputer power, Ithaca, NY
Terborgh J (1974) The preservation of natural diversity: the problem of extinction prone species. BioScience 24:715–722
Tüllmann G, Böttcher H (1985) Synanthropic vegetation and structure of urban subsystems. In: Géhu JM (ed) Les végétation nitrophiles et anthropogènes, Colloques Phytosociologiques XII. J. Cramer, Berlin, Stuttgart, pp 481–523
United Nations Centre for Human Settlements (1996) An urbanizing world: global report on human settlements, 1996. Oxford University Press, Oxford
Vähä-Piikkiö I, Kurtto A, Hahkala V (2004) Species number, historical elements and protection of threatened species in the flora of Helsinki, Finland. Landsc Urban Plan 68:357–370
Vetaas OR (2002) Realized and potential climate niches: a comparison of four Rhododendron tree species. J Biogeogr 29:545–554
Vitousek PM, Mooney HA, Lubchenko J, Melillo JM (1997) Human domination on Earth’s ecosystems. Science 277:494–499
Wildlife Trust for Birmingham and the Black Country (2000) Habitat Action Plan. Urban «Wasteland». http://www.wildlifetrust.org.uk/urbanwt/ecorecord/bap/html/urban.htm. Last access date: 02/06/05
Zerbe S., Maurer U., Schmitz S., Sukopp H (2003) Biodiversity in Berlin and its potential for nature conservation. Landsc Urban Plan 62:139–148
Acknowledgements
Financial support for this work was provided by the Brussels Institute for Environment Management (IBGE-BIM) in the framework of the research project “Information and survey network on the biodiversity in Brussels”. We also thank Desiré Paelinckx for the information provided regarding the Biological Valuation Map, and two anonymous reviewers for their valuable comments to an earlier version of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
Annex 1
Species name | Abbreviation |
---|---|
Acer platanoides | Acerplat |
Blechnum spicant | Blecspic |
Calystegia sepium | Calysepi |
Carex sylvatica | Caresylv |
Chaerophyllum temulum | Chaetemu |
Chenopodium hybridum | Chenhybr |
Chrysosplenium oppositifolium | Chryoppo |
Circaea lutetiana | Circlute |
Cornus sanguinea | Cornsang |
Cymbalaria muralis | Cymbmura |
Daucus carota | Dauccaro |
Epilobium ciliatum | Epilcili |
Euphorbia peplus | Euphpepl |
Galega officinalis | Galeoffi |
Galinsoga ciliata | Galicili |
Hedera helix | Hedeheli |
Hordeum murinum | Hordmuri |
Hyacinthoides non-scripta | Hyacnon- |
Hyoscyamus niger | Hyosnige |
Hypochoeris radicata | Hyporadi |
Lathyrus latifolius | Lathlati |
Lepidium ruderale | Lepirude |
Linaria vulgaris | Linavulg |
Lolium perenne | Lolipere |
Luzula campestris | Luzucamp |
Luzula sylvatica | Luzusylv |
Lycopus europaeus | Lycoeuro |
Matricaria discoidea | Matrdisc |
Matricaria maritima subsp. inodora | Matrmari |
Medicago sativa | Medisati |
Melilotus albus | Melialbu |
Melilotus officinalis | Melioffi |
Milium effusum | Milieffu |
Mycelis muralis | Mycemura |
Plantago lanceolata | Planlanc |
Polygonatum multiflorum | Polymult |
Polygonum amphibium | Polyamph |
Polygonum aviculare | Polyavic |
Polygonum hydropiper | Polyhydr |
Potentilla reptans | Poterept |
Pseudofumaria lutea | Pseulute |
Pteridium aquilinum | Pteraqui |
Ranunculus sardous | Ranusard |
Reseda lutea | Reselu-ea |
Reseda luteola | Reselu-la |
Rosa canina | Rosacani |
Rubus idaeus | Rubuidae |
Rumex sanguineus | Rumesang |
Salix caprea | Salicapr |
Sambucus racemosa | Sambrace |
Scrophularia nodosa | Scronodo |
Senecio inaequidens | Seneinae |
Senecio ovatus | Seneovat |
Silene latifolia | Silelati |
Solanum nigrum | Solanigr |
Stellaria graminea | Stelgram |
Syringa vulgaris | Syrivulg |
Teucrium scorodonia | Teucscor |
Trifolium repens | Trifrepe |
Veronica montana | Veromont |
Veronica officinalis | Verooffi |
Vulpia myuros | Vulpmyur |
Rights and permissions
About this article
Cite this article
Godefroid, S., Koedam, N. Urban plant species patterns are highly driven by density and function of built-up areas. Landscape Ecol 22, 1227–1239 (2007). https://doi.org/10.1007/s10980-007-9102-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10980-007-9102-x