Skip to main content
Log in

Abstract

Myo1c is a member of the myosin-I family that binds phosphoinositides and links the actin cytoskeleton to cellular membranes. Recent investigations suggest that targeting of myo1c to some subcellular regions requires the binding of an unknown protein to the IQ motifs in the myo1c regulatory domain. We identify two myristoylated proteins that bind the myo1c regulatory domain: calcium-binding protein 1 (CaBP1) and calcium- and integrin-binding-protein-1 (CIB1). CIB1 and CaBP1 interact with myo1c in vivo as determined by pull-down experiments and fluorescence microscopy where the endogenously expressed proteins show extensive cellular colocalization with myo1c. CIB1 and CaBP1 bind to the myo1c IQ motifs in the regulatory domain where they compete with calmodulin for binding. CaBP1 has a higher apparent affinity for myo1c than CIB1, and both proteins better compete with calmodulin in the presence of calcium. We propose that these proteins may play a role in specifying subcellular localization of myo1c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bahler M, Rhoads A (2002) Calmodulin signaling via the IQ motif. FEBS Lett 513(1):107–113

    Article  PubMed  CAS  Google Scholar 

  • Balish MF, Moeller EF 3rd, Coluccio LM (1999) Overlapping distribution of the 130- and 110-kDa myosin I isoforms on rat liver membranes. Arch Biochem Biophys 370(2):285–293

    Article  PubMed  CAS  Google Scholar 

  • Bose A, Guilherme A, Robida SI, Nicoloro SM, Zhou QL, Jiang ZY, Pomerleau DP, Czech MP (2002) Glucose transporter recycling in response to insulin is facilitated by myosin Myo1c. Nature 420(6917):821–824

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne RD, Weiss JL (2001) The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J 353(Pt 1):1–12

    PubMed  CAS  Google Scholar 

  • Cyr JL, Dumont RA, Gillespie PG (2002) Myosin-1c interacts with hair-cell receptors through its calmodulin-binding IQ domains. J Neurosci 22(7):2487–2495

    PubMed  CAS  Google Scholar 

  • De Castro E, Nef S, Fiumelli H, Lenz SE, Kawamura S, Nef P (1995) Regulation of rhodopsin phosphorylation by a family of neuronal calcium sensors. Biochem Biophys Res Commun 216(1):133–140

    Article  PubMed  Google Scholar 

  • Etournay R, El-Amraoui A, Bahloul A, Blanchard S, Roux I, Pezeron G, Michalski N, Daviet L, Hardelin JP, Legrain P et al (2005) PHR1, an integral membrane protein of the inner ear sensory cells, directly interacts with myosin 1c and myosin VIIa. J Cell Sci 118(Pt 13):2891–2899

    Article  PubMed  CAS  Google Scholar 

  • Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87(2):593–658

    Article  PubMed  CAS  Google Scholar 

  • Gillespie PG, Cyr JL (2002) Calmodulin binding to recombinant myosin-1c and myosin-1c IQ peptides. BMC Biochem 3:31

    Article  PubMed  Google Scholar 

  • Haataja L, Kaartinen V, Groffen J, Heisterkamp N (2002) The small GTPase Rac3 interacts with the integrin-binding protein CIB and promotes integrin alpha(IIb)beta(3)-mediated adhesion and spreading. J Biol Chem 277(10):8321–8328

    Article  PubMed  CAS  Google Scholar 

  • Haeseleer F, Sokal I, Verlinde CL, Erdjument-Bromage H, Tempst P, Pronin AN, Benovic JL, Fariss RN, Palczewski K (2000) Five members of a novel Ca(2+)-binding protein (CABP) subfamily with similarity to calmodulin. J Biol Chem 275(2):1247–1260

    Article  PubMed  CAS  Google Scholar 

  • Haynes LP, Tepikin AV, Burgoyne RD (2004) Calcium-binding protein 1 is an inhibitor of agonist-evoked, inositol 1,4,5-trisphosphate-mediated calcium signaling. J Biol Chem 279(1):547–555

    Article  PubMed  CAS  Google Scholar 

  • Hokanson DE, Ostap EM (2006) Myo1c binds tightly and specifically to phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate. Proc Natl Acad Sci USA 103(9):3118–3123

    Article  PubMed  CAS  Google Scholar 

  • Hokanson DE, Laakso JM, Lin T, Sept D, Ostap EM (2006) Myo1c binds phosphoinositides through a putative pleckstrin homology domain. Mol Biol Cell 17(11):4856–4865

    Article  PubMed  CAS  Google Scholar 

  • Hollenbach AD, McPherson CJ, Lagutina I, Grosveld G (2002) The EF-hand calcium-binding protein calmyrin inhibits the transcriptional and DNA-binding activity of Pax3. Biochim Biophys Acta 1574(3):321–328

    PubMed  CAS  Google Scholar 

  • Holt JR, Gillespie SK, Provance DW, Shah K, Shokat KM, Corey DP, Mercer JA, Gillespie PG (2002) A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108(3):371–381

    Article  PubMed  CAS  Google Scholar 

  • Houdusse A, Silver M, Cohen C (1996) A model of Ca(2+)-free calmodulin binding to unconventional myosins reveals how calmodulin acts as a regulatory switch. Structure 4(12):1475–1490

    Article  PubMed  CAS  Google Scholar 

  • Jung G, Remmert K, Wu X, Volosky JM, Hammer JA 3rd (2001) The Dictyostelium CARMIL protein links capping protein and the Arp2/3 complex to type I myosins through their SH3 domains. J Cell Biol 153(7):1479–1497

    Article  PubMed  CAS  Google Scholar 

  • Lee A, Westenbroek RE, Haeseleer F, Palczewski K, Scheuer T, Catterall WA (2002) Differential modulation of Ca(v)2.1 channels by calmodulin and Ca2+-binding protein 1. Nat Neurosci 5(3):210–217

    Article  PubMed  CAS  Google Scholar 

  • Manceva S, Lin T, Pham H, Lewis JH, Goldman YE, Ostap EM (2007) Calcium regulation of calmodulin binding to and dissociation from the myo1c regulatory domain. Biochemistry 46(42):11718–11726

    Article  PubMed  CAS  Google Scholar 

  • Naik UP, Patel PM, Parise LV (1997) Identification of a novel calcium-binding protein that interacts with the integrin alphaIIb cytoplasmic domain. J Biol Chem 272(8):4651–4654

    Article  PubMed  CAS  Google Scholar 

  • Nakamori Y, Emoto M, Fukuda N, Taguchi A, Okuya S, Tajiri M, Miyagishi M, Taira K, Wada Y, Tanizawa Y (2006) Myosin motor myo1c and its receptor NEMO/IKK-gamma promote TNF-alpha-induced serine307 phosphorylation of IRS-1. J Cell Biol 173(5):665–671

    Article  PubMed  CAS  Google Scholar 

  • Novak KD, Titus MA (1998) The myosin I SH3 domain and TEDS rule phosphorylation site are required for in vivo function. Mol Biol Cell 9(1):75–88

    PubMed  CAS  Google Scholar 

  • Phillips KR, Tong S, Goodyear R, Richardson GP, Cyr JL (2006) Stereociliary myosin-1c receptors are sensitive to calcium chelation and absent from cadherin 23 mutant mice. J Neurosci 26(42):10777–10788

    Article  PubMed  CAS  Google Scholar 

  • Rogers MS, Strehler EE (2001) The tumor-sensitive calmodulin-like protein is a specific light chain of human unconventional myosin X. J Biol Chem 276(15):12182–12189

    Article  PubMed  CAS  Google Scholar 

  • Ruppert C, Godel J, Muller RT, Kroschewski R, Reinhard J, Bahler M (1995) Localization of the rat myosin I molecules myr 1 and myr 2 and in vivo targeting of their tail domains. J Cell Sci 108(Pt 12):3775–3786

    PubMed  CAS  Google Scholar 

  • Siemens J, Lillo C, Dumont RA, Reynolds A, Williams DS, Gillespie PG, Muller U (2004) Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428(6986):950–955

    Article  PubMed  CAS  Google Scholar 

  • Stabler SM, Ostrowski LL, Janicki SM, Monteiro MJ (1999) A myristoylated calcium-binding protein that preferentially interacts with the Alzheimer’s disease presenilin 2 protein. J Cell Biol 145(6):1277–1292

    Article  PubMed  CAS  Google Scholar 

  • Tang N, Ostap EM (2001) Motor domain-dependent localization of myo1b (myr-1). Curr Biol 11(14):1131–1135

    Article  PubMed  CAS  Google Scholar 

  • Tang N, Lin T, Ostap EM (2002) Dynamics of myo1c (myosin-ibeta ) lipid binding and dissociation. J Biol Chem 277(45):42763–42768

    Article  PubMed  CAS  Google Scholar 

  • Terrak M, Rebowski G, Lu RC, Grabarek Z, Dominguez R (2005) Structure of the light chain-binding domain of myosin V. Proc Natl Acad Sci USA 102(36):12718–11723

    Article  PubMed  CAS  Google Scholar 

  • Tyska MJ, Mooseker MS (2004) A role for myosin-1A in the localization of a brush border disaccharidase. J Cell Biol 165(3):395–405

    Article  PubMed  CAS  Google Scholar 

  • Tyska MJ, Mackey AT, Huang JD, Copeland NG, Jenkins NA, Mooseker MS (2005) Myosin-1a is critical for normal brush border structure and composition. Mol Biol Cell 16(5):2443–2457

    Article  PubMed  CAS  Google Scholar 

  • Van der Bliek AM, Meyers MB, Biedler JL, Hes E, Borst P (1986) A 22-kd protein (sorcin/V19) encoded by an amplified gene in multidrug-resistant cells, is homologous to the calcium-binding light chain of calpain. Embo J 5(12):3201–3208

    PubMed  Google Scholar 

  • Wagner MC, Barylko B, Albanesi JP (1992) Tissue distribution and subcellular localization of mammalian myosin I. J Cell Biol 119(1):163–170

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Sakai J, Matsudaira PT, Baines IC, Sellers JR, Hammer JA 3rd, Korn ED (1997) The amino acid sequence of the light chain of Acanthamoeba myosin IC. J Muscle Res Cell Motil 18(3):395–398

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Nomura K, Ohyama A, Ishikawa R, Komiya Y, Hosaka K, Yamauchi E, Taniguchi H, Sasakawa N, Kumakura K et al (2005) Myosin-Va regulates exocytosis through the submicromolar Ca2+-dependent binding of syntaxin-1A. Mol Biol Cell 16(10):4519–4530

    Article  PubMed  CAS  Google Scholar 

  • Way M, Pope B, Gooch J, Hawkins M, Weeds AG (1990) Identification of a region in segment 1 of gelsolin critical for actin binding. EMBO J 9(12):4103–4109

    PubMed  CAS  Google Scholar 

  • White C, Yang J, Monteiro MJ, Foskett JK (2006) CIB1, a ubiquitously expressed Ca2+-binding protein ligand of the InsP3 receptor Ca2+ release channel. J Biol Chem 281(30):20825–20833

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Lieber MR (1997) Interaction between DNA-dependent protein kinase and a novel protein, KIP. Mutat Res 385(1):13–20

    PubMed  CAS  Google Scholar 

  • Yang J, McBride S, Mak DO, Vardi N, Palczewski K, Haeseleer F, Foskett JK (2002) Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca(2+) release channels. Proc Natl Acad Sci USA 99(11):7711–7716

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grants to E.M.O. (GM57247) and J.K.F. (GM56328).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Michael Ostap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, N., Lin, T., Yang, J. et al. CIB1 and CaBP1 bind to the myo1c regulatory domain. J Muscle Res Cell Motil 28, 285–291 (2007). https://doi.org/10.1007/s10974-007-9124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-007-9124-7

Keywords

Navigation