Skip to main content
Log in

Abstract

This tutorial aims to show the basic steps of evaluating the thermoanalytical curves to obtain reliable data for comparison with literature data for ionic liquids (ILs). The thermoanalytical investigation of the series of bis(trifluoromethylsulfonyl)imide-based imidazolium derivatives is described. The effects of the experimental conditions, such as the atmosphere and sample pan type, on the results, are outlined. The determination of the characteristic temperatures of the decomposition is described. The difficulties in obtaining reliable data for comparison are highlighted. The advantages of applying the simultaneous TG–DSC technique are shown by comparing the corresponding derivative DTG and DSC curves. Examples of the visualization and evaluation of the data of the compound series are presented. The results of the hyphenated TG–MS measurements are evaluated. The limitations of the applied techniques are discussed, too. The principles of here described evaluation steps of the thermoanalytical curves can be generally applied not only to ILs but to most of the sample types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ionic liquids. https://www.sigmaaldrich.com/RS/en/technical-documents/technical-article/chemistry-and-synthesis/reaction-design-and-optimization/ionic-liquids.

  2. Galiński M, Lewandowski A, Stępniak I. Ionic liquids as electrolytes. Electrochim Acta. 2006. https://doi.org/10.1016/j.electacta.2006.03.016.

    Article  Google Scholar 

  3. Petković M, Seddon KR, Rebelo LPN, Silva PC. Ionic liquids. A pathway to environmental acceptability. Chem Soc Rev. 2011;40:1383–403. https://doi.org/10.1039/C004968A.

    Article  PubMed  Google Scholar 

  4. Plechkova NV, Seddon KR. Applications of ionic liquids in the chemical industry. Chem Soc Rev. 2008;37:123–50. https://doi.org/10.1039/B006677J.

    Article  CAS  PubMed  Google Scholar 

  5. Morris RE. Ionothermal synthesis-ionic liquids as functional solvents in the preparation of crystalline materials. Chem Commun. 2009. https://doi.org/10.1039/B902611H.

    Article  Google Scholar 

  6. Dupont J, Scholten JD. On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem Soc Rev. 2010. https://doi.org/10.1039/B822551F.

    Article  PubMed  Google Scholar 

  7. Lei Zh, Chen B, Koo Y-M, MacFarlane DR. Introduction. Ionic Liq Chem Rev. 2017. https://doi.org/10.1021/acs.chemrev.7b00246.

    Article  Google Scholar 

  8. Welton T. Ionic liquids in green chemistry. Green Chem. 2011. https://doi.org/10.1039/C0GC90047H.

    Article  Google Scholar 

  9. Zhang L-Y, Liu S-H, Wang Y. Exploring the influence of the type of anion in imidazolium ionic liquids on its thermal stability. J Therm Anal Calorim. 2023;148:4985–95. https://doi.org/10.1007/s10973-023-12037-z.

    Article  CAS  Google Scholar 

  10. Salgado J, Parajó JJ, Fernández J, Villanueva M. Long-term thermal stability of some 1-butyl-1-methylpyrrolidinium ionic liquids. J Chem Thermodyn. 2014. https://doi.org/10.1016/j.jct.2014.03.030.

    Article  Google Scholar 

  11. Papović S, Vraneš M, Armaković S, Armaković SJ, Mészáros Szécsényi K, Bešter-Rogač M, Gadžurić S. Investigation of 1,2,3-trialkylimidazolium ionic liquids. Experiment and density functional theory calculations. New J Chem. 2017;41:650–60. https://doi.org/10.1039/C6NJ03009B.

    Article  CAS  Google Scholar 

  12. Chambreau SD, Boatz JA, Vaghjiani GhL, Koh Ch, Kostko O, Golan Amir L, Stephen R. Thermal decomposition mechanism of 1-ethyl-3-methylimidazolium bromide ionic liquid. J Phys Chem A. 2012. https://doi.org/10.1021/jp209389d.

    Article  PubMed  Google Scholar 

  13. Mohd S, Mohd NZ, Ahmad AH, Mahat MM. Thermal analysis of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid to PEO-NaCF3SO3 polymer electrolyte. SSP. 2017. https://doi.org/10.4028/www.scientific.net/SSP.268.338.

    Article  Google Scholar 

  14. Hofmann A, Migeot M, Hanemann Th. Investigation of binary mixtures containing 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)azanide and ethylene carbonate. J Chem Eng Data. 2016. https://doi.org/10.1021/acs.jced.5b00338.

    Article  Google Scholar 

  15. Ramenskaya LM, Grishina EP, Kudryakova NO. Thermochemical properties of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid under conditions of equilibrium with atmospheric moisture. Russ J Phys Chem. 2018. https://doi.org/10.1134/S003602441801020X.

    Article  Google Scholar 

  16. Kanti PK, Chereches EI, Minea AA, Sharma KV. Experiments on thermal properties of ionic liquid enhanced with alumina nanoparticles for solar applications. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-022-11534-x.

    Article  Google Scholar 

  17. Yue G, Hong S, Liu S-H. Evaluation of thermal properties and process hazard of 1-hexyl-3-methylimidazolium nitrate through thermodynamic calculations and equilibrium methods. J Therm Anal Calorim. 2022;148:4977–84. https://doi.org/10.1007/s10973-022-11818-2.

    Article  CAS  Google Scholar 

  18. Hao Y, Peng J, Hu Sh, Li J, Zhai M. Thermal decomposition of allyl-imidazolium-based ionic liquid studied by TG–MS analysis and DFT calculations. Thermochim Acta. 2010. https://doi.org/10.1016/j.tca.2010.01.013.

    Article  Google Scholar 

  19. Bhattacharyya Sh, Shah FU. Thermal stability of choline based amino acid ionic liquids. J Mol Liq. 2018. https://doi.org/10.1016/j.molliq.2018.06.096.

    Article  Google Scholar 

  20. Meißner A, Efimova A, Schmidt P. Impacts of TG furnace parameters for prediction of long-term thermal stability of ionic liquids. Thermochim Acta. 2021. https://doi.org/10.1016/j.tca.2021.178917.

    Article  Google Scholar 

  21. Wang W-T, Liu S-H, Wang Y, Yu C-F, Cheng Y-F, Shu C-M. Thermal stability and exothermic behaviour of imidazole ionic liquids with different anion types under oxidising and inert atmospheres. J Mol Liq. 2021;343:117691. https://doi.org/10.1016/j.molliq.2021.117691.

    Article  CAS  Google Scholar 

  22. Efimova A, Pfützner L, Schmidt P. Thermal stability and decomposition mechanism of 1-ethyl-3-methylimidazolium halides. Thermochim Acta. 2015. https://doi.org/10.1016/j.tca.2015.02.001.

    Article  Google Scholar 

  23. DzH Z, Abdelaziz A. The study of decomposition of 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide by using termogravimetry. Dissecting vaporization and decomposition of ILs. J Mol Liq. 2020;313:113507. https://doi.org/10.1016/j.molliq.2020.113507.

    Article  CAS  Google Scholar 

  24. Luo H, Baker GA, Dai Sh. Isothermogravimetric determination of the enthalpies of vaporization of 1-alkyl-3-methylimidazolium ionic liquids. J Phys Chem B. 2008. https://doi.org/10.1021/jp805340f.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Verevkin SP, Ralys RV, Zaitsau DH, Emel’yanenko VN, Schick C. Express thermo-gravimetric method for the vaporization enthalpies appraisal for very low volatile molecular and ionic compounds. Thermochim Acta. 2012;538:55–62. https://doi.org/10.1016/j.tca.2012.03.018.

    Article  CAS  Google Scholar 

  26. Feng W-q, Lu Y-h, Chen Y, Lu Y-w, Yang T. Thermal stability of imidazolium-based ionic liquids investigated by TG and FTIR techniques. J Therm Anal Calorim. 2016;125:143–54. https://doi.org/10.1007/s10973-016-5267-3.

    Article  CAS  Google Scholar 

  27. Liu S-H, Yu C-F, Wu K-F, Chen C-C. Comprehensive investigation of two environmentally-friendly imidazolium nitrate ionic liquids. From calorimetry to thermal risk evaluation. J Therm Anal Calorim. 2022;148:4913–25. https://doi.org/10.1007/s10973-022-11488-0.

    Article  CAS  Google Scholar 

  28. Xia R, Liu S-H, Wang W-T, Chu F-J. Influence of oxidizing gas atmosphere on thermal stability and safety risk of 1-buty-3-methylimidazolium tetrafluoroborate (Correction). J Therm Anal Calorim. 2022;148:4729. https://doi.org/10.1007/s10973-022-11839-x.

    Article  CAS  Google Scholar 

  29. Shamsipur M, Beigi AAM, Teymouri M, Pourmortazavi SM, Irandoust M. Physical and electrochemical properties of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. J Mol Liq. 2010. https://doi.org/10.1016/j.molliq.2010.08.005.

    Article  Google Scholar 

  30. Ding L, Lu X, Duan W, Pan Y, Zhang X, Shu C-M. Predicting thermal decomposition temperatures of imidazolium-based energetic ionic liquids using norm indexes. J Therm Anal Calorim. 2023;148:4905–12. https://doi.org/10.1007/s10973-022-11904-5.

    Article  CAS  Google Scholar 

  31. Yu C-F, Liu S-H, Xia R, Wu K-F. Studies on the thermal stability and decomposition kinetics of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide via density functional theory and experimental methods. J Mol Liq. 2022;360:119422. https://doi.org/10.1016/j.molliq.2022.119422.

    Article  CAS  Google Scholar 

  32. Xu R-J, Liu S-H, Wu K-F, Yu C-F. Effect of 1-Butyl-3-MethylImidazolium bis(trifluoromethylsulfonyl)imide on spontaneous combustion of bituminous coal. J Therm Anal Calorim. 2023;148:4707–15. https://doi.org/10.1007/s10973-022-11914-3.

    Article  CAS  Google Scholar 

  33. Bai Z, Deng J, Wang C, Zhang Y, Shu C-M, Ramakrishna S. Effect of anions in ionic liquids on microstructure and oxidation characteristics of lignite. Fuel. 2023;339:127446. https://doi.org/10.1016/j.fuel.2023.127446.

    Article  CAS  Google Scholar 

  34. Ngo HL, LeCompte K, Hargens L, McEwen AB. Thermal properties of imidazolium ionic liquids. Thermochim Acta. 2000. https://doi.org/10.1016/S0040-6031(00)00373-7.

    Article  Google Scholar 

  35. Ullah Z, Bustam MA, Man Z, Shah SN, Khan AS, Muhammad N. Synthesis, characterization and physicochemical properties of dual-functional acidic ionic liquids. J Mol Liq. 2016. https://doi.org/10.1016/j.molliq.2016.08.018.

    Article  Google Scholar 

  36. Cao Y, Mu T. comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. Ind Eng Chem Res. 2014. https://doi.org/10.1021/ie5009597.

    Article  Google Scholar 

  37. Zhang Q, Shreeve JM. Energetic ionic liquids as explosives and propellant fuels. A new journey of ionic liquid chemistry. Chem Rev. 2014;114:10527–74. https://doi.org/10.1021/cr500364t.

    Article  CAS  PubMed  Google Scholar 

  38. Maton C, de Vos N, Stevens ChV. Ionic liquid thermal stabilities. Decomposition mechanisms and analysis tools. Chem Soc Rev. 2013;42:5963. https://doi.org/10.1039/C3CS60071H.

    Article  CAS  PubMed  Google Scholar 

  39. Chen Y, Han X, Liu Zh, Li Y, Sun H, Wang H, Wang J. Thermal decomposition and volatility of ionic liquids. Factors, evaluation and strategies. J Mol Liq. 2022;366:120336. https://doi.org/10.1016/j.molliq.2022.120336.

    Article  CAS  Google Scholar 

  40. Thermogravimetry. https://www.iso.org/standard/59710.html. Accessed on 10 March 2023

  41. Lever T, Haines P, Rouquerol J, Charsley EL, van Eckeren P, Burlett DJ. ICTAC nomenclature of thermal analysis (IUPAC Recommendations 2014). Pure Appl Chem. 2014. https://doi.org/10.1515/pac-2012-0609.

    Article  Google Scholar 

  42. Standard Test Method for Thermal Stability by Thermogravimetry. https://www.document-center.com/standards/show/ASTM-E2550. Accessed on 10 March 2023

  43. Scammells PJ, Scott JL, Singer RD. Ionic liquids. The neglected issues. Aust J Chem. 2005. https://doi.org/10.1071/CH04272.

    Article  Google Scholar 

  44. Greenwood NN, Earnshaw A. Chemistry of the elements. 2nd ed. Oxford, Boston: Butterworth-Heinemann; 1997 (Hungarian Edition, 1999, p. 233).

  45. Weinstock B, Claassen HH, Malm JG. Platinum hexafluoride 1. J Am Chem Soc. 1957. https://doi.org/10.1021/ja01578a073.

    Article  Google Scholar 

  46. Bartlett N, Lohmann DH. 124. Fluorides of the noble metals. Part III. The Fluorides of platinum. J Chem Soc. 1964. https://doi.org/10.1039/JR9640000619.

    Article  Google Scholar 

  47. Tanuma T, Okamoto H, Ohnishi K, Morikawa S, Suzuki T. Partially fluorinated metal oxide catalysts for a Friedel–Crafts-type reaction of dichlorofluoromethane with tetrafluoroethylene. Catal Lett. 2010. https://doi.org/10.1007/s10562-009-0197-3.

    Article  Google Scholar 

  48. Mészáros Szécsényi K, Barta Holló B. Simultaneous DSC techniques. In: Menczel JD, Grebowicz J, editors. Handbook of differential scanning calorimetry. Cambridge: Elsevier; 2023. p. 659–791.

    Chapter  Google Scholar 

  49. NIST Chemistry WebBook. https://webbook.nist.gov/. Accessed on 10 March 2023

Download references

Acknowledgements

The authors would like to acknowledge the contribution of the Secretariat for Higher Education and Scientific Research of the Autonomous Province of Vojvodina, Serbia (Grant No. 142-451-2545/2021-01/2), and the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (Grant No. 451-03-47/2023-01/200125).‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

Author information

Authors and Affiliations

Authors

Contributions

SP was involved in sample preparation and original draft preparation, MV took part in funding and resources and provided useful comments on the manuscript, BHB contributed to measurements, formal analysis and original draft preparation, and KMSz supervised the work, analyzed the data and did the writing—reviewing and editing.

Corresponding author

Correspondence to Katalin Mészáros Szécsényi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papović, S., Vraneš, M., Barta Holló, B. et al. Tutorial for thermal analysis of ionic liquids. J Therm Anal Calorim (2023). https://doi.org/10.1007/s10973-023-12439-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-023-12439-z

Keywords

Navigation