Skip to main content
Log in

Experimental investigation on paraffin wax-based heat sinks with cross plate fin arrangement for cooling of electronic components

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Modern electronic devices need an efficient thermal management system to remove heat effectively under different heat loading conditions. The present paper reports the thermal performance of different heat sink (HS) configurations with various cavities (1, 4, 9, 16, 25, and 36) formed by rectangular cross plate fins arrangement integrated with phase change material (PCM) through experimental investigation. Here, paraffin wax and aluminum are used as PCM and heat sink materials, respectively; tests are conducted for three different heat flux values (\({q}^{{\prime\prime}}\)= 1.5, 2.0, and 2.5 kW m−2) and different PCM volume fractions (\(\varphi =\) 0.0, 0.5, 0.8, and 1.0). Results are presented in the form of the transient temperature variation in the HS base, the time required to reach the required set point temperature, enhancement ratio, thermal capacity, and thermal conductance values. The maximum reduction in temperature is found to be 19 and 19.5% for HS with 36 cavities compared to HS with a single cavity at \({q}^{{\prime\prime}}\)=1.5 and 2.0 kW m−2, respectively. In addition, HS with 36 cavities exhibits the maximum enhancement ratio of 6.5 at \({q}^{{\prime\prime}}\)=1.5 kW m−2 for SPT of 65 °C and heat capacity of 1.63 during post-sensible heating for \({q}^{{\prime\prime}}=\) 2.0 kW m−2. The thermal performance is found to increase with the increase in the number of cavities and PCM volume fractions. The study suggests that the solidification time takes approximately twice that of the melting time; forced convection cooling needs to be applied to enhance the cooling rate of PCM.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

DSC:

Differential scanning calorimeter

HS:

Heat sink

LHTES:

Latent heat thermal energy storage

PCM:

Phase change material

SPT:

Set point temperature (°C)

TCEs:

Thermal conductivity enhancers

TMECs:

Thermal management of electronic components

\(G\) :

Thermal conductance (W°C−1)

\(H\) :

Heat transferred (kJ)

\(k\) :

Thermal conductivity (W m−1 K−1)

\(P\) :

Power (W)

\({q}^{{\prime\prime}}\) :

Heat flux (kW m−2)

\(\Delta T\) :

Temperature difference (K)

\({T}_{\mathrm{max}}\) :

Maximum temperature after charging phase (K)

\({t}_{\mathrm{Cr} \mathrm{with PCM}}\) :

Time to reach critical SPT with PCM (s)

\({t}_{\mathrm{Cr} \mathrm{without fins and} \mathrm{PCM}}\) :

Time to reach critical SPT without fins and PCM (s)

\({V}_{\mathrm{f}}\) :

Volume occupied by fins (mm3)

\({V}_{\mathrm{HS}}\) :

Volume of HS cavity (mm3)

\({V}_{\mathrm{PCM}}\) :

Volume of PCM (mm3)

\(\gamma =\frac{{V}_{\mathrm{f}}}{{V}_{\mathrm{HS}}}\) :

TCE volume fraction

\(\delta =\frac{H}{\Delta T}\) :

Thermal capacity (kJ/K)

\(\varepsilon =\frac{{t}_{\mathrm{Cr} \mathrm{with PCM}}}{{t}_{\mathrm{Cr} \mathrm{without fins and PCM}}}\) :

Enhancement ratio

\(\varphi =\frac{{V}_{\mathrm{PCM}}}{{V}_{\mathrm{HS}}-{V}_{\mathrm{f}}}\) :

Volume fraction of PCM

References

  1. Kothari R, Sahu SK, Kundalwal SI. Investigation on thermal characteristics of nano enhanced phase change material based finned and unfinned heat sinks for thermal management system. Chem Eng Process-Process Intens. 2021. https://doi.org/10.1016/j.cep.2021.108328.

    Article  Google Scholar 

  2. Ali HM. Analysis of heat pipe-aided graphene-oxide based nanoparticle-enhanced phase change material heat sink for passive cooling of electronic components. J Therm Analy Calorim. 2021. https://doi.org/10.1007/s10973-020-09946-8.

    Article  Google Scholar 

  3. Ali M, Sari RK, Sajjad U, Sultan Ali HM. Effect of annealing on microstructures and mechanical properties of PA-12 lattice structures proceeded by multi jet fusion technology. Addit Manufac. 2021. https://doi.org/10.1016/j.addma.2021.102285.

    Article  Google Scholar 

  4. Ahangari M, Maerefat M. An innovative PCM system for thermal comfort improvement and energy demand reduction in building under different climate conditions. Sustain Cities Soc. 2019. https://doi.org/10.1016/j.scs.2018.09.008.

    Article  Google Scholar 

  5. Tuncbilek E, Arici M, Bouadila S, Wonorahardjo S. Seasonal and annual performance analysis of PCM-integrated building brick under the climatic conditions of Marmara region. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09320-8.

    Article  Google Scholar 

  6. Gu Z, Liu H, Li Y. Thermal energy recovery of air conditioning system-heat recovery system calculation and phase change materials development. Appl Therm Eng. 2004. https://doi.org/10.1016/j.applthermaleng.2004.03.017.

    Article  Google Scholar 

  7. Wonorahardjo S, Sutjahja IM, Tuncbilek E, Achsani RA, Arici M, Rahmah N. PCM-based passive air conditioner in urban houses for the tropical climates: an experimental analysis on the stratum air circulation. Build Environm. 2021. https://doi.org/10.1016/j.buildenv.2021.107632.

    Article  Google Scholar 

  8. Mondal S. Phase change materials for smart textiles-an overview. Appl Therm Eng. 2008. https://doi.org/10.1016/j.applthermaleng.2007.08.009.

    Article  Google Scholar 

  9. Sherer TH, Joshi Y. Numerical and experimental investigation of shell-and-tube phase-change material thermal energy storage unit. J Electronic Packag. 2016. https://doi.org/10.1115/1.4034101.

    Article  Google Scholar 

  10. Ali HM, Arshad A. Experimental investigation of n-eicosane based circular pin-fin heat sinks for passive cooling of electronic devices. Int J Heat Mass Transf. 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.004.

    Article  Google Scholar 

  11. Mahmoud S, Tang A, Toh C, AL-Dadah R, Soo SL,. Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks. Appl Energy. 2013. https://doi.org/10.1016/j.apenergy.2013.04.059.

    Article  Google Scholar 

  12. Kumar A, Kothari R, Sahu SK, Kundalwal SI. A comparative study and optimization of phase change material based heat sinks for thermal management of electronic components. J Energ Stor. 2021. https://doi.org/10.1016/j.est.2021.103224.

    Article  Google Scholar 

  13. Baby R, Balaji C. Thermal optimization of PCM based pin fin heat sinks: an experimental study. Appl Therm Eng. 2013. https://doi.org/10.1016/j.applthermaleng.2012.10.056.

    Article  Google Scholar 

  14. Kumar A, Kothari R, Singh PK, Paulraj MP, Sahu SK, Kundalwal SI. Numerical simulation of PCM based heat sink with plate fins for thermal management of electronic components. In: Cavas-Martinez F, Chaari F, Gherardini F, Haddar M, Ivanov V, Kwon YW, Trojanowska J, editors Lecture Series in Mechanical Engineering, 2021. https://doi.org/10.1007/978-981-33-4165-4_2

  15. Said Z, Ghodbane M, Tiwari AK, Ali HM, Boumeddane B, Ali ZM. 4E (Energy, Exergy, Economic, and Environment) examination of a small LFR solar water heater: an experimental and numerical study. Case Stud Therm Eng. 2021. https://doi.org/10.1016/j.csite.2021.101277.

    Article  Google Scholar 

  16. Parsa SM, Majidniya M, Alawee WH, Dhahad HA, Ali HM, Afrand M, Amidpour M. Thermodynamic, economic, and sensitivity analysis of salt gradient solar pond (SGSP) integrated with a low-temperature multi effect desalination (MED): Case study, Iran. Sustain Energ Technol Assess. 2021. https://doi.org/10.1016/j.seta.2021.101478.

    Article  Google Scholar 

  17. Usman M, Ali M, Rashid T, Ali HM, Frey G. Towards zero energy solar households—A model-based simulation and optimization analysis for a humid subtropical climate. Sustain Energ Technol Assess. 2021. https://doi.org/10.1016/j.seta.2021.101574.

    Article  Google Scholar 

  18. Arici M, Yildiz C, Nizetic S, Shahsavar A, Campo A. Implications of boundary conditions on natural convective heat transfer of molten phase change material inside enclosures. Int J Ener Res. 2021. https://doi.org/10.1002/er.6344.

    Article  Google Scholar 

  19. Ali HM. Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems—a comprehensive review. Solar Energ. 2020. https://doi.org/10.1016/j.solener.2019.11.075.

    Article  Google Scholar 

  20. Yang XH, Tan S, He Z, Liu J. Finned heat pipe assisted low melting point metal PCM heat sink against extremely high power thermal shock. Energy Conv Manag. 2018. https://doi.org/10.1016/j.enconman.2018.01.056.

    Article  Google Scholar 

  21. Arici M, Tutuncu E, Campo A. Numerical investigation of melting of paraffin wax dispersed with cuo nanoparticles inside a square enclosure. Heat Transf Res. 2018. https://doi.org/10.1615/HeatTransRes.2018019748.

    Article  Google Scholar 

  22. Zmywaczyk J, Zbinkowski P, Smogor H, Olejnik A, Koniorczyk P. Cooling of high-power LED lamp using a commercial paraffin wax. Int J Thermophys. 2017;20:17. https://doi.org/10.1007/s10765-017-21803.

    Article  Google Scholar 

  23. Zhang L, Zhou K, Wei Q, Ma L, Ye W, Li H, Zhou B, Yu Z, Lin CT, Luo J, Gan X. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage. Appl Energy. 2019. https://doi.org/10.1016/j.apenergy.2018.10.036.

    Article  Google Scholar 

  24. Qureshi ZA, Ali HM, Khushnood S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. Int J Heat Mass Transf. 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.049.

    Article  Google Scholar 

  25. Al-Maghalseh M, Mahkamov K. Methods of heat transfer intensification in PCM thermal storage systems: review paper. Renew Sustain Energy Rev. 2018. https://doi.org/10.1016/j.rser.2018.04.064.

    Article  Google Scholar 

  26. Abid M, Khan MS, Ratlamwala TAH, Malik MN, Ali HM, Cheok Q. Thermodynamic analysis and comparison of different absorption cycles driven by evacuated tube solar collector utilizing hybrid nanofluids. Energ Convrs Manag. 2021. https://doi.org/10.1016/j.enconman.2021.114673.

    Article  Google Scholar 

  27. Kumar A, Kothari R, Sahu SK, Kundalwal SI, Sharma A. Investigation of phase change material integrated with high thermal conductive carbon foam inside heat sinks for thermal management of electronic components. Proceed ASME Power Conf. 2021. https://doi.org/10.1115/POWER2021-65569.

    Article  Google Scholar 

  28. Arici M, Tutuncu E, Yildiz C, Li D. Enhancement of PCM melting rate via internal fin and nanoparticles. Int J Heat Mass Transf. 2020. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119845.

    Article  Google Scholar 

  29. Rehman T, Ali HM, Saieed A, Pao W, Ali M. Copper foam/PCM based heat sinks: an experimental study for electronic cooling system. Int J Heat Mass Transf. 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.120.

    Article  Google Scholar 

  30. Alshaer WG, Nadda SA, Rady MA, Boat CL, Barrio EPD. Numerical investigations of using carbon foam/PCM/Nano carbon tubes composites in thermal management of electronic equipment. Energy Conv Manag. 2015. https://doi.org/10.1016/j.enconman.2014.10.045.

    Article  Google Scholar 

  31. Rehman T, Ali HM. Experimental study on thermal behaviour of RT-35HC paraffin within copper and Iron–Nickel open cell foams: energy storage for thermal management of electronics. Int J Heat Mass Transf. 2020. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118852.

    Article  Google Scholar 

  32. Tariq SL, Ali HM, Akram MA, Janjua MM. Experimental investigation on graphene based nanoparticles enhanced phase change materials (GbNePCMs) for thermal management of electronic equipment. J Energy Stor. 2020. https://doi.org/10.1016/j.est.2020.101497.

    Article  Google Scholar 

  33. Hosseinizadeh SF, Tan FL, Moosania SM. Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins. Appl Therm Eng. 2011. https://doi.org/10.1016/j.applthermaleng.2011.07.031.

    Article  Google Scholar 

  34. Ali HM. A semi-empirical model for retained condensate on horizontal pin-fin tube including the effect of vapour velocity. Case Stud Therm Eng. 2021. https://doi.org/10.1016/j.csite.2021.101420.

    Article  Google Scholar 

  35. Baby R, Balaji C. Experimental investigation on phase change material based finned heat sink for electronic equipment cooling. Int J Heat Mass Transf. 2012. https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.020.

    Article  Google Scholar 

  36. Baby R, Balaji C. Thermal management of electronics using phase change material based pin fin heat sinks. J Phys Conf Ser. 2012. https://doi.org/10.1088/1742-6596/395/1/012134.

    Article  Google Scholar 

  37. Baby R, Balaji C. A neural network-based optimization of thermal performance of phase change material-based finned heat sinks-an experimental study. Exp Heat Transf. 2013. https://doi.org/10.1080/08916152.2012.705573.

    Article  Google Scholar 

  38. Arshad A, Ali HM, Khushnood S, Jabbal M. Experimental investigation of PCM based round pin-fin heat sinks for thermal management of electronics: effect of pin-fin diameter. Int J Heat Mass Transf. 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.008.

    Article  Google Scholar 

  39. Arshad A, Ali HM, Ali M, Manzoor S. Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: effect of pin thickness and PCM volume fraction. Appl Therm Eng. 2017. https://doi.org/10.1016/j.applthermaleng.2016.10.090.

    Article  Google Scholar 

  40. Usman H, Ali HM, Arshad A, Ashraf MJ, Khushnood S, Janjua MM, Kazi SN. An experimental study of PCM based finned and un-finned heat sinks for passive cooling of electronics. Heat Mass Transf. 2018. https://doi.org/10.1007/s00231-018-2389-0.

    Article  Google Scholar 

  41. Gharbi S, Harmand S, Jabrallah SB. Experimental comparison between different configurations of PCM based heat sinks for cooling electronic components. Appl Therm Eng. 2015. https://doi.org/10.1016/j.applthermaleng.2015.05.024.

    Article  Google Scholar 

  42. Arici M, Tutuncu E, Karabay H, Campo A. Investigation on the melting process of phase change material in a square cavity with a single fin attached at the center of the heated wall. Eur Phys J Appl Phys. 2018. https://doi.org/10.1051/epjap/2018180092.

    Article  Google Scholar 

  43. Sahoo SK, Rath P, Das MK. Numerical study of phase change material based orthotropic heat sink for thermal management of electronics components. Int J Heat Mass Transf. 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.063.

    Article  Google Scholar 

  44. Oliveski RD, Becker F, Rocha LAO, Biserni C, Eberhardt GES. Design of fin structures for phase change material (PCM) melting process in rectangular cavities. J Energy Storage. 2021. https://doi.org/10.1016/j.est.2021.102337.

    Article  Google Scholar 

  45. Arshad A, Jabbal M, Sardari PT, Bashir MA, Faraji H, Yan Y. Transient simulation of finned heat sinks embedded with PCM for electronics cooling. Therm Sci Eng Prog. 2020. https://doi.org/10.1016/j.tsep.2020.100520.

    Article  Google Scholar 

  46. Prasad JS, Anandalakshmi R, Muthukumar P. Numerical investigation on conventional and PCM heat sinks under constant and variable heat flux conditions. Clean Tech Environ Policy. 2020. https://doi.org/10.1007/s10098-020-01829-8.

    Article  Google Scholar 

  47. Srivatsa PVSS, Baby R, Balaji C. Numerical investigation of PCM based heat sinks with embedded metal foam/crossed plate fins. Num Heat Transf Part. 2014. https://doi.org/10.1080/10407782.2014.894371.

    Article  Google Scholar 

  48. Kumar A, Kothari R, Sahu SK, Kundalwal SI, Paulraj MP. Numerical investigation of cross plate fin heat sink integrated with phase change material for cooling application of portable electronic devices. Int J Energy Res. 2021. https://doi.org/10.1002/er.6404.

    Article  PubMed  Google Scholar 

  49. Fan L, Xiao Y, Zeng Y, Fang X, Wang X, Xu X, Yu Z, Hong R, Hu Y, Cen K. Effects of melting temperature and the presence of internal fins on the performance of a phase change material (PCM)-based heat sink. Int J Therm Sci. 2013. https://doi.org/10.1016/j.ijthermalsci.2013.03.015.

    Article  Google Scholar 

  50. Yang X, Tan S, Deng Y, Wang L, Liu J, Zhou Y. Experimental and numerical investigation of low melting point metal based PCM heat sink with internal fins. Int Commun Heat Mass Transf. 2017. https://doi.org/10.1016/j.icheatmasstransfer.2017.07.001.

    Article  Google Scholar 

  51. Yang X, Tan S, He Y, Zhou Y. Evaluation and optimization of low melting point metal PCM heat sink against ultra-high thermal shock. Appl Therm Eng. 2017. https://doi.org/10.1016/j.applthermaleng.2017.03.050.

    Article  Google Scholar 

  52. Badin G, Ahmed N, Ali HM, Ahmed T, Jameel MS. Effect of addition of pigments on thermal characteristics and the resulting performance enhancement of asphalt. Construct Build Mater. 2021. https://doi.org/10.1016/j.conbuildmat.2021.124212.

    Article  Google Scholar 

  53. Kothari R, Sahu SK, Kundalwal SI, Mahalkar P. Thermal performance of phase change material-based heat sink for passive cooling of electronic components: an experimental study. Int J Energy Res. 2020. https://doi.org/10.1002/er.6215.

    Article  Google Scholar 

  54. Kumar A, Kothari R, Sahu SK, Kundalwal SI. Selection of phase change material for thermal management of electronic devices using multi attribute decision making technique. Int J Energy Res. 2020. https://doi.org/10.1002/er.5896.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shokouhmand H, Kamkari B. Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit. Exp Therm Fluid Sci. 2013. https://doi.org/10.1016/j.expthermflusci.2013.06.010.

    Article  Google Scholar 

  56. Burns GW, Scroger MG, Strouse GF, Croarkin MC, Guthrie WF. Temperature electromotive force reference functions and tables for the letter-designated thermocouple types based on the ITS-90. NASA STI/Recon Technical Report N (1993)

  57. Coleman HW, Steele WG. Experimental and uncertainty analysis for engineers. New York: Wiley; 1989.

    Google Scholar 

  58. Zhao L, Xing Y, Liu X. Experimental investigation on the thermal management performance of heat sink using low melting point alloy as phase change material. Rene Energy. 2020. https://doi.org/10.1016/j.renene.2019.07.115.

    Article  Google Scholar 

  59. Ali HM, Ashraf MJ, Giovannelli A, Irfan M, Irshad TB, Hamid HM, Hassan F, Arshad A. Thermal management of electronics: an experimental analysis of triangular, rectangular and circular pin-fin heat sinks for various PCMs. Int J Heat Mass Transf. 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.044.

    Article  Google Scholar 

  60. Kothari R, Sahu SK, Kundalwal SI. Experimental investigation of the effect of inclination angle on the performance of phase change material based finned heat sink. J Energy Storage. 2021. https://doi.org/10.1016/j.est.2021.102462.

    Article  Google Scholar 

  61. Kumar A, Kothari R, Sahu SK, Kundalwal SI. Thermal performance of heat sink using nano-enhanced phase change material (NePCM) for cooling of electronic components. Microelect Reliab. 2021. https://doi.org/10.1016/j.microrel.2021.114144.

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the Department of Science and Technology (DST), India, for financial support to carry out the present work under DST/TMD/MES/2k17/65.

Author information

Authors and Affiliations

Authors

Contributions

Anuj Kumar involved in conceptualization, methodology, software, validation, formal analysis, data curation, writing—original draft. Rohit Kothari took part in conceptualization, experimental setup and heat sink design, analysis. Vivek Saxena involved in heat sink design and fabrication, data curation. Santosh K. Sahu took part in resources, funding acquisition, visualization and supervision, writing—review & editing, project administration. Shailesh I. Kundalwal involved in funding acquisition, supervision, writing—review & editing, project administration.

Corresponding author

Correspondence to Anuj Kumar.

Ethics declarations

Conflict of interest

The authors reveal that they have no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kothari, R., Saxena, V. et al. Experimental investigation on paraffin wax-based heat sinks with cross plate fin arrangement for cooling of electronic components. J Therm Anal Calorim 147, 9487–9504 (2022). https://doi.org/10.1007/s10973-022-11223-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11223-9

Keywords

Navigation