Skip to main content
Log in

Thermal behaviours at low and high temperature of biodiesels produced from beef tallow and corn oil

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal behaviours and kinetics of biodiesels produced from beef tallow and corn oils were examined by using thermal analysis techniques (TG-DTG/DSC) at different heating rates in this study. The biodiesels were analysed with 1H-NMR and GC–MS techniques. It was seen that the biodiesel samples are composed of both saturated (Myristic acid C14:0, palmitic acid C16:0, stearic acid C18:0,) and unsaturated (Palmitoleic acid C16:1, oleic acid C18:1, linoleic acid C18:2) FAMEs from GC–MS analysis. Kinetic parameters for the combustion process of biodiesels were determined by using the iso-conversional model-free methods, KAS and FWO methods. The activation energy of beef-tallow biodiesel from KAS method is 86.11 kJ mol−1, and from FWO method is 83.52 kJ mol−1. The activation energy of corn-oil biodiesel from KAS method is 79.12 kJ mol−1, and from FWO method is 90.07 kJ mol−1. It was figured out that the activation energies of the biodiesel samples have values close to each other, and controlling reaction mechanism for both biodiesel samples by using master-plot method are power law (P4). It was obtained CP (cloud point) and CFPP (cold filter plugging point) values from DSC analysis. CP values of biodiesel from beef tallow and corn oil are 16.1 °C and − 5.5 °C, respectively. CFPP values of biodiesel from beef tallow and corn oil are − 11.2 °C and − 6.7 °C, respectively. It was obtained from TG-DSC analysis that the origins of biodiesel samples on thermal behaviours are dominant at low temperatures (< 0 °C), yet the origins are not important at high temperature, and the combustion properties are the same as each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Frequency factor or preexponential factor (s1)

E :

Activation energy or apparent activation energy (kJ mol1)

R :

Gas constant (8.314 J mol1 K1)

T :

Absolute temperature (K)

β :

Heating rate (°C min1)

α :

Conversion rate

References

  1. Jeyakumar N, Narayanasamy B. Effect of basil antioxidant additive on the performance, combustion and emission characteristics of used cooking oil biodiesel in CI engine. J Therm Anal Calorim. 2020;140(1):457–73.

    Article  CAS  Google Scholar 

  2. Yesilyurt MK, Yilbasi Z, Aydin M. The performance, emissions, and combustion characteristics of an unmodifed diesel engine running on the ternary blends of pentanol/safflower oil biodiesel/diesel fuel. J Therm Anal Calorim. 2020;140:2903–42.

    Article  CAS  Google Scholar 

  3. Ma Q, Zhang Q, Zheng Z. An experimental assessment on low temperature combustion using diesel/biodiesel/C2. C5 alcohol blends in a diesel engine. Fuel. 2021;288:119832.

    Article  CAS  Google Scholar 

  4. Moraes PS, Engelmann JI, Igansi AV, Cadaval TRSA Jr, de Almeida Pinto LA. Nile tilapia industrialization waste: evaluation of the yield, quality and cost of the biodiesel production process. J Clean Prod. 2020;287:125041.

    Article  Google Scholar 

  5. Yesilyurt MK, Cesur C. Biodiesel synthesis from Styrax officinalis L. seed oil as a novel and potential non-edible feedstock: a parametric optimization study through the Taguchi technique. Fuel. 2020;265:1125.

    Google Scholar 

  6. Yesilyurt MK, Cesur C, Aslan V, Yilbasi Z. The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: a comprehensive review. Renew Sustain Energy Rev. 2020;119:109574.

    Article  CAS  Google Scholar 

  7. Eryilmaz T, Yesilyurt MK. Influence of blending ratio on the physicochemical properties of safflower oil methyl ester-safflower oil, safflower oil methyl ester-diesel and safflower oil-diesel. Renew Energy. 2016;95:233–47.

    Article  CAS  Google Scholar 

  8. Doğan TH, Temur H. Effect of fractional winterization of beef tallow biodiesel on the cold flow properties and viscosity. Fuel. 2013;108:793–6.

    Article  Google Scholar 

  9. Chouhan AS, Singh N, Sarma A. A comparative analysis of kinetic parameters from TGDTA of Jatropha curcas oil, biodiesel, petroleum diesel and B50 using different methods. Fuel. 2013;109:217–24.

    Article  Google Scholar 

  10. Dwivedi G, Sharma MP. Experimental investigation on thermal stability of pongamia biodiesel by thermogravimetric analysis. Egypt J Pet. 2016;25(1):33–8.

    Article  Google Scholar 

  11. Raslavičius L, Striūgas N, Felneris M, Skvorčinskienė R, Miknius L. Thermal characterization of P. moriformis oil and biodiesel. Fuel. 2018;220:140–50.

    Article  Google Scholar 

  12. Wang S, Uzoejinwa BB, Abomohra AEF, Wang Q, He Z, Feng Y, et al. Characterization and pyrolysis behavior of the green microalga Micractinium conductrix grown in lab-scale tubular photobioreactor using Py-GC/MS and TGA/MS. J Anal Appl Pyrol. 2018;135:340–9.

    Article  CAS  Google Scholar 

  13. Karin P, Borhanipour M, Songsaengchan Y, Laosuwan S, Charoenphonphanich C, Chollacoop N, et al. Oxidation kinetics of small CI engine’s biodiesel particulate matter. Int J Autom Technol. 2015;16(2):211–9.

    Article  Google Scholar 

  14. Jain S, Sharma M. Thermal stability of biodiesel and its blends: a review. Renew Sustain Energy Rev. 2011;15(1):438–48.

    Article  CAS  Google Scholar 

  15. Chand P, Reddy CV, Verkade JG, Wang T, Grewell D. Thermogravimetric quantification of biodiesel produced via alkali catalyzed transesterification of soybean oil. Energy Fuels. 2009;23(2):989–92.

    Article  CAS  Google Scholar 

  16. Jesus J, Ferreira A, Szilágyi I, Cavalheiro E. Thermal behavior and polymorphism of the antioxidants: BHA, BHT and TBHQ. Fuel. 2020;278:118298.

    Article  Google Scholar 

  17. Fabiani C, Pisello AL, Barbanera M, Cabeza LF, Cotana F. Assessing the potentiality of animal fat based-bio phase change materials (PCM) for building applications: an innovative multipurpose thermal investigation. Energies. 2019;12(6):1111.

    Article  CAS  Google Scholar 

  18. Alarcon RT, Gaglieri C, Lamb KJ, North M, Bannach G. Spectroscopic characterization and thermal behavior of baru nut and macaw palm vegetable oils and their epoxidized derivatives. Ind Crops Products. 2020;154:112585.

    Article  CAS  Google Scholar 

  19. Kok MV, Topa E. Thermal characterization and model-free kinetics of biodiesel sample. J Therm Anal Calorim. 2015;122(2):955–61.

    Article  CAS  Google Scholar 

  20. Mumtaz MW, Adnan A, Anwar F, Mukhtar H, Raza MA, Ahmad F, et al. Response surface methodology: an emphatic tool for optimized biodiesel production using rice bran and sunflower oils. Energies. 2012;5(9):3307–28.

    Article  CAS  Google Scholar 

  21. Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M. Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev. 2012;16:143–69.

    Article  CAS  Google Scholar 

  22. Ullah Z, Bustam MA, Man Z, Khan AS, Muhammad N, Sarwono A. Preparation and kinetics study of biodiesel production from waste cooking oil using new functionalized ionic liquids as catalysts. Renew Energy. 2017;114:755–65.

    Article  CAS  Google Scholar 

  23. Li S, Whitely N, Xu W, Pan W-P. Characterization of coal by thermal analysis methods. 2005.

  24. Marinov S, Gonsalvesh L, Stefanova M, Yperman J, Carleer R, Reggers G, et al. Combustion behaviour of some biodesulphurized coals assessed by TGA/DTA. Therm Chim Acta. 2010;497(1–2):46–51.

    Article  CAS  Google Scholar 

  25. Varol M, Atimtay A, Bay B, Olgun H. Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis. Therm Chim Acta. 2010;510(1–2):195–201.

    Article  CAS  Google Scholar 

  26. Liu Z, Quek A, Hoekman SK, Srinivasan M, Balasubramanian R. Thermogravimetric investigation of hydrochar-lignite co-combustion. Bioresour Technol. 2012;123:646–52.

    Article  CAS  Google Scholar 

  27. Harry-O’Kuru R, Mohamed A, Xu J, Sharma B. Synthesis and characterization of corn oil polyhydroxy fatty acids designed as additive agent for many applications. J Am Oil Chemists’ Soc. 2011;88(8):1211–21.

    Article  Google Scholar 

  28. Díaz-Ballote L, Gómez-Hernández K, Vega-Lizama ET, Ruiz-Gómez MA, Maldonado L, Hernández E. Thermogravimetric approach for assessing the oxidation level of a biodiesel sample. Quim Nova. 2018;41(5):492–6.

    Google Scholar 

  29. Nicolau CL, Klein AN, Silva CA, Fiorucci AR, Stropa JM, Santos EO, et al. Thermal properties of the blends of methyl and ethyl esters prepared from babassu and soybean oils. J Braz Chem Soc. 2018;29(8):1672–9.

    CAS  Google Scholar 

  30. Misutsu MY, Cavalheiro LF, Ricci TG, Viana LH, de Oliveira SC, Junior AM, et al. Thermoanalytical methods in verifying the quality of biodiesel. Biofuels—status and perspective. Croatia: InTech; 2015. p. 251–69.

    Google Scholar 

  31. Alexandre ECF, Silveira EV, de Souza Castro CF, Sales JF, de Oliveira LCS, Viana LH, et al. Synthesis, characterization and study of the thermal behavior of methylic and ethylic biodiesel produced from tucumã (Astrocaryum huaimi Mart.) seed oil. Fuel. 2015;161:233–8.

    Article  CAS  Google Scholar 

  32. Ramalho E, Carvalho Filho J, Albuquerque A, De Oliveira S, Cavalcanti E, Stragevitch L, et al. Low temperature behavior of poultry fat biodiesel: diesel blends. Fuel. 2012;93:601–5.

    Article  CAS  Google Scholar 

  33. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Therm Chim Acta. 1999;340:53–68.

    Article  Google Scholar 

  34. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Therm Chim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  35. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nation Bureau Stand. 1956;57(4):217–21.

    Article  CAS  Google Scholar 

  36. Trans AT. Joint convention of four electrical institutes. Res Rep Chiba Inst Technol. 1971;16:22–31.

    Google Scholar 

  37. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Lett. 1966;4(5):323–8.

    Article  CAS  Google Scholar 

  38. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Japan. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  39. Wanjun T, Yuwen L, Xi Y, Cunxin W. Kinetic studies of the calcination of ammonium metavanadate by thermal methods. Ind Eng Chem Res. 2004;43(9):2054–9.

    Article  Google Scholar 

  40. Doğan F, Kaya İ, Bilici A. Azomethine-based phenol polymer: synthesis, characterization and thermal study. Synth Metals. 2011;161(12):79–86.

    Article  Google Scholar 

  41. Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110(35):17315–28.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jale Naktiyok.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doğan, T.H., Naktiyok, J. Thermal behaviours at low and high temperature of biodiesels produced from beef tallow and corn oil. J Therm Anal Calorim 147, 9025–9035 (2022). https://doi.org/10.1007/s10973-021-11160-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11160-z

Keywords

Navigation