Skip to main content
Log in

Numerical investigation and multi-criteria optimization of the thermal–hydraulic characteristics of turbulent flow in conical tubes fitted with twisted tape insert

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The ever-growing interest in developing compact and more effective heat exchangers necessitates the investigation of combined passive solutions. Despite the diverse related literature, there are no studies on smooth conical tubes (convergent and divergent tubes) fitted with twisted tape inserts. This study analyzes and optimizes the absolute and relative thermal and hydraulic performances of tube heat exchangers, with and without twisted tape inserts, based on Nusselt number and friction factor, by adjusting the tube’s diameter ratio and the operational Reynolds number. A consolidated framework of computational fluid dynamics simulations, data-driven multilayered perceptron-based modeling, and gradient-free genetic dual-objective optimization is employed. The results showed that conventional straight tubes are the most favorable in terms of hydraulic performance, with a maximum friction factor of only 0.042. Convergent tubes are the most effective in terms of thermal performance, with Nusselt numbers up to 475.9. Divergent tubes do not show potentials for heat transfer enhancement unless equipped with a tape insert. Twisted tapes effectively improve the thermal performances of all system configurations but also drastically increase the friction factor. Compared to a baseline design of an empty straight tube, the thermal performance can be improved by up to 74.8%. Almost all Pareto frontier solutions belonged to convergent tubes of different configurations. The selected moderate non-dominated solution (assuming equal importance of thermal and hydraulic performances) corresponds to a Nusselt number of 402.9 and a friction factor of 0.130 for a tape-fitted convergent tube with a diameter ratio of 0.445, operating at a Reynolds number of 39,854. In terms of relative performance, the moderate solution corresponds to a Nusselt number ratio of 1.535 and a friction factor ratio of 6.157 using a tape-fitted convergent tube with a diameter ratio of 0.385, operating at a Reynolds number of 31,254. Overall, convergent tubes are recommended as a simple way for boosting the heat transfer rate and the proposed models can be used as flexible tools for selecting the operating conditions based on the designer’s preference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Kaood A, Hassan MA. Thermo-hydraulic performance of nanofluids flow in various internally corrugated tubes. Chem Eng Process Process Intensif. 2020;154:108043.

    Article  CAS  Google Scholar 

  2. Abed AM, Alghoul MA, Sopian K, Mohammed HA, Majdi H, Al-Shamani AN. Design characteristics of corrugated trapezoidal plate heat exchangers using nanofluids. Chem Eng Process Process Intensif. 2015;87:88–103.

    Article  CAS  Google Scholar 

  3. Saikia A, Dalal A, Pati S. Thermo-hydraulic transport characteristics of non-Newtonian fluid flows through corrugated channels. Int J Therm Sci. 2018;129:201–8.

    Article  Google Scholar 

  4. Li M, Khan TS, Al Hajri E, Ayub ZH. Geometric optimization for thermal–hydraulic performance of dimpled enhanced tubes for single phase flow. Appl Therm Eng. 2016;103:639–50.

    Article  Google Scholar 

  5. Abdelmagied M. Thermal performance characteristics of a triple spiral tube heat exchanger. Chem Eng Process Process Intensif. 2020;149:107707.

    Article  CAS  Google Scholar 

  6. Syam Sundar L, Singh MK. Convective heat transfer and friction factor correlations of nanofluid in a tube and with inserts: a review. Renew Sustain Energy Rev. 2013;20:23–35.

    Article  CAS  Google Scholar 

  7. Kaood A, Abubakr M, Al-Oran O, Hassan MA. Performance analysis and particle swarm optimization of molten salt-based nanofluids in parabolic trough concentrators. Renew Energy. 2021;177:1045–62.

    Article  CAS  Google Scholar 

  8. Han H, Yu R, Li B, Zhang Y, Wang W, Chen X. Multi-objective optimization of corrugated tube with loose-fit twisted tape using RSM and NSGA-II. Int J Heat Mass Transf. 2019;131:781–94.

    Article  Google Scholar 

  9. El-Bakry MM, Kassem MA, Hassan MA. Passive performance enhancement of parabolic trough solar concentrators using internal radiation heat shields. Renew Energy. 2021;165:52–66.

    Article  Google Scholar 

  10. Wang G, Qi C, Liu M, Li C, Yan Y, Liang L. Effect of corrugation pitch on thermo-hydraulic performance of nanofluids in corrugated tubes of heat exchanger system based on exergy efficiency. Energy Convers Manag. 2019;186:51–65.

    Article  CAS  Google Scholar 

  11. Hatami M, Kheirkhah A, Ghanbari-Rad H, Jing D. Numerical heat transfer enhancement using different nanofluids flow through venturi and wavy tubes. Case Stud Therm Eng. 2019;13:100368.

    Article  Google Scholar 

  12. Mei S, Qi C, Luo T, Zhai X, Yan Y. Effects of magnetic field on thermo-hydraulic performance of Fe3O4–water nanofluids in a corrugated tube. Int J Heat Mass Transf. 2019;128:24–45.

    Article  CAS  Google Scholar 

  13. Rabienataj Darzi AA, Farhadi M, Sedighi K. Experimental investigation of convective heat transfer and friction factor of Al2O3/water nanofluid in helically corrugated tube. Exp Therm Fluid Sci. 2014;57:188–99.

    Article  CAS  Google Scholar 

  14. Ahmed MA, Yusoff MZ, Ng KC, Shuaib NH. Numerical and experimental investigations on the heat transfer enhancement in corrugated channels using SiO2–water nanofluid. Case Stud Therm Eng. 2015;6:77–92.

    Article  Google Scholar 

  15. Wongcharee K, Eiamsa-ard S. Heat transfer enhancement by using CuO/water nanofluid in corrugated tube equipped with twisted tape. Int Commun Heat Mass Transf. 2012;39:251–7.

    Article  CAS  Google Scholar 

  16. Hasanpour A, Farhadi M, Sedighi K. Experimental heat transfer and pressure drop study on typical, perforated, V-cut and U-cut twisted tapes in a helically corrugated heat exchanger. Int Commun Heat Mass Transf. 2016;71:126–36.

    Article  Google Scholar 

  17. Mokkapati V, Lin CS. Numerical study of an exhaust heat recovery system using corrugated tube heat exchanger with twisted tape inserts. Int Commun Heat Mass Transf. 2014;57:53–64.

    Article  Google Scholar 

  18. Zimparov VD, Petkov VM, Bergles AE. Performance characteristics of deep corrugated tubes with twisted-tape inserts. J Enhanc Heat Transf. 2012;19:1–11.

    Article  CAS  Google Scholar 

  19. Zaboli M, Nourbakhsh M, Ajarostaghi SSM. Numerical evaluation of the heat transfer and fluid flow in a corrugated coil tube with lobe-shaped cross-section and two types of spiral twisted tape as swirl generator. J Therm Anal Calorim. 2020.

  20. Eiamsa-ard S, Promthaisong P, Thianpong C, Pimsarn M, Chuwattanakul V. Influence of three-start spirally twisted tube combined with triple-channel twisted tape insert on heat transfer enhancement. Chem Eng Process Process Intensif. 2016;102:117–29.

    Article  CAS  Google Scholar 

  21. Al-Sammarraie AT, Al-Jethelah M, Salimpour MR, Vafai K. Nanofluids transport through a novel concave/convex convergent pipe. Numer Heat Transf Part A Appl. 2019;75:91–109.

    Article  CAS  Google Scholar 

  22. Al-Sammarraie AT, Vafai K. Thermal–hydraulic performance analysis of a convergent double pipe heat exchanger. J Heat Transfer. 2019;141:051001.

    Article  CAS  Google Scholar 

  23. Al-Sammarraie AT, Vafai K. Heat transfer augmentation through convergence angles in a pipe. Numer Heat Transf Part A Appl. 2017;72:197–214.

    Article  CAS  Google Scholar 

  24. Hashemian M, Jafarmadar S, Sadighi DH. A comprehensive numerical study on multi-criteria design analyses in a novel form (conical) of double pipe heat exchanger. Appl Therm Eng. 2016;102:1228–37.

    Article  Google Scholar 

  25. Hashemian M, Jafarmadar S, Nasiri J, Sadighi DH. Enhancement of heat transfer rate with structural modification of double pipe heat exchanger by changing cylindrical form of tubes into conical form. Appl Therm Eng. 2017;118:408–17.

    Article  Google Scholar 

  26. Khaled ARA. Enhancement of heat and exergy transfer inside double pipe heat exchanger with conical tube. Int J Exergy. 2014;15:171–95.

    Article  Google Scholar 

  27. Fadodun OG, Amosun AA, Okoli NL, Olaloye DO, Durodola SS, Ogundeji JA. Sensitivity analysis of entropy production in Al2O3/H2O nanofluid through converging pipe. J Therm Anal Calorim. 2021;143:431–44.

    Article  CAS  Google Scholar 

  28. Hamedani FA, Ajarostaghi SSM, Hosseini SA. Numerical evaluation of the effect of geometrical and operational parameters on thermal performance of nanofluid flow in convergent–divergent tube. J Therm Anal Calorim. 2020;140:1483–505.

    Article  CAS  Google Scholar 

  29. Abubakr M, Amein H, Akoush BM, El-Bakry MM, Hassan MA. An intuitive framework for optimizing energetic and exergetic performances of parabolic trough solar collectors operating with nanofluids. Renew Energy. 2020;157:130–49.

    Article  CAS  Google Scholar 

  30. Parsazadeh M, Duan X. Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit. Appl Energy. 2018;216:142–56.

    Article  CAS  Google Scholar 

  31. Chamoli S, Yu P, Yu S. Multi-objective shape optimization of a heat exchanger tube fitted with compound inserts. Appl Therm Eng. 2017;117:708–24.

    Article  Google Scholar 

  32. Han H, Yu R, Li B, Zhang Y. Multi-objective optimization of corrugated tube inserted with multi-channel twisted tape using RSM and NSGA-II. Appl Therm Eng. 2019;159:113731.

    Article  Google Scholar 

  33. Han HZ, Li BX, Wu H, Shao W. Multi-objective shape optimization of double pipe heat exchanger with inner corrugated tube using RSM method. Int J Therm Sci. 2015;90:173–86.

    Article  Google Scholar 

  34. Nasr MRJ, Khalaj AH. Heat transfer coefficient and friction factor prediction of corrugated tubes combined with twisted tape inserts using artificial neural network. Heat Transf Eng. 2010;31:59–69.

    Article  CAS  Google Scholar 

  35. Hemmat EM. Designing a neural network for predicting the heat transfer and pressure drop characteristics of Ag/water nanofluids in a heat exchanger. Appl Therm Eng. 2017;126:559–65.

    Article  CAS  Google Scholar 

  36. Hasanpour A, Farhadi M, Sedighi K. Intensification of heat exchangers performance by modified and optimized twisted tapes. Chem Eng Process Process Intensif. 2017;120:276–85.

    Article  CAS  Google Scholar 

  37. Lv JY, Liu ZC, Liu W. Active design for the tube insert of center-connected deflectors based on the principle of exergy destruction minimization. Int J Heat Mass Transf. 2020;150:119260.

    Article  Google Scholar 

  38. Khanmohammadi S, Mazaheri N. Second law analysis and multi-criteria optimization of turbulent heat transfer in a tube with inserted single and double twisted tape. Int J Therm Sci. 2019;145:105998.

    Article  Google Scholar 

  39. Omidi M, Rabienataj Darzi AA, Farhadi M. Turbulent heat transfer and fluid flow of alumina nanofluid inside three-lobed twisted tube. J Therm Anal Calorim. 2019;137:1451–62.

    Article  CAS  Google Scholar 

  40. Nakhchi ME, Rahmati MT. Entropy generation of turbulent Cu–water nanofluid flows inside thermal systems equipped with transverse-cut twisted turbulators. J Therm Anal Calorim. 2021;143:2475–84.

    Article  CAS  Google Scholar 

  41. Córcoles-Tendero JI, Belmonte JF, Molina AE, Almendros-Ibáñez JA. Numerical simulation of the heat transfer process in a corrugated tube. Int J Therm Sci. 2018;126:125–36.

    Article  Google Scholar 

  42. Kaood A, Abou-Deif T, Eltahan H, Yehia MA, Khalil EE. Numerical investigation of heat transfer and friction characteristics for turbulent flow in various corrugated tubes. Proc Inst Mech Eng Part A J Power Energy. 2019;233:457–75.

    Article  Google Scholar 

  43. Bishop JE, Sukumar N. Polyhedral finite elements for nonlinear solid mechanics using tetrahedral subdivisions and dual-cell aggregation. Comput Aided Geom Des. 2020;77:101812.

    Article  Google Scholar 

  44. Wang W, Cao Y, Okaze T. Comparison of hexahedral, tetrahedral and polyhedral cells for reproducing the wind field around an isolated building by LES. Build Environ. 2021;195:107717.

    Article  Google Scholar 

  45. Boache PJ. Perspective: a method for uniform reporting of grid refinement studies. J Fluids Eng Trans ASME. 1994;116:405–13.

    Article  Google Scholar 

  46. Dittus FW, Boelter LMK. Heat transfer in automobile radiators of the tubular type. Int Commun Heat Mass Transf. 1985;12:3–22.

    Article  Google Scholar 

  47. Sieder EN, Tate GE. Heat transfer and pressure drop of liquids in tubes. Ind Eng Chem. 1936;28:1429–35.

    Article  CAS  Google Scholar 

  48. Gnielinski V. New equations for heat and mass transfer in turbulent flow through pipes and ducts. Forsch Im Ingenieurwessen. 1975;41:1975.

    Google Scholar 

  49. Petukhov BS. Heat transfer and friction in turbulent pipe flow with variable physical properties. Adv Heat Transf. 1970;6:503–64.

    Article  Google Scholar 

  50. Wang Y, He YL, Lei YG, Li R. Heat transfer and friction characteristics for turbulent flow of dimpled tubes. Chem Eng Technol. 2009;32:956–63.

    Article  CAS  Google Scholar 

  51. Ma Y, He Z, Peng X, Xing Z. Experimental investigation of the discharge valve dynamics in a reciprocating compressor for trans-critical CO2 refrigeration cycle. Appl Therm Eng. 2012;32:13–21.

    Article  CAS  Google Scholar 

  52. Eiamsa-ard S, Thianpong C, Eiamsa-ard P. Turbulent heat transfer enhancement by counter/co-swirling flow in a tube fitted with twin twisted tapes. Exp Therm Fluid Sci. 2010;34:53–62.

    Article  Google Scholar 

  53. Salviano LO, Dezan DJ, Yanagihara JI. Optimization of winglet-type vortex generator positions and angles in plate-fin compact heat exchanger: response surface methodology and direct optimization. Int J Heat Mass Transf. 2015;82:373–87.

    Article  Google Scholar 

  54. Yegnanarayana B. Artificial neural networks. 11th ed. New Delhi: Prentice-Hall of India; 2005.

    Google Scholar 

  55. Zilouchian A, Jamshidi M, editors. Intelligent control systems using soft computing methodologies. 1st ed. Cambridge: CRC Press; 2001.

    Google Scholar 

  56. Hassan MA, Abubakr M, Khalil A. A profile-free non-parametric approach towards generation of synthetic hourly global solar irradiation data from daily totals. Renew Energy. 2021;167:613–28.

    Article  Google Scholar 

  57. Peng H, Ling X. Predicting thermal–hydraulic performances in compact heat exchangers by support vector regression. Int J Heat Mass Transf. 2015;84:203–13.

    Article  Google Scholar 

  58. Sivanandam SN, Deepa SN. Applications of genetic algorithms. 1st ed. Berlin: Springer; 2008.

    Google Scholar 

  59. Coello CAC, Lamont GB, Van VDA. Evolutionary algorithms for solving multi-objective problems. 2nd ed. Boston: Springer; 2007.

    Google Scholar 

  60. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 2002;6:182–97.

    Article  Google Scholar 

  61. Abbas AT, Abubakr M, Hassan MA, Luqman M, Soliman MS, Hegab H. An adaptive design for cost, quality and productivity-oriented sustainable machining of stainless steel 316. J Mater Res Technol. 2020;9:14568–81.

    Article  CAS  Google Scholar 

  62. Han HZ, Li BX, Yu BY, He YR, Li FC. Numerical study of flow and heat transfer characteristics in outward convex corrugated tubes. Int J Heat Mass Transf. 2012;55:7782–802.

    Article  Google Scholar 

  63. Tang X, Dai X, Zhu D. Experimental and numerical investigation of convective heat transfer and fluid flow in twisted spiral tube. Int J Heat Mass Transf. 2015;90:523–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MAH was involved in conceptualization, methodology, software, validation, formal analysis, investigation, data curation, visualization, writing—original draft, writing—review and editing, and supervision. MAK was involved in writing—review and editing and resources. AK was involved in conceptualization, methodology, software, validation, formal analysis, investigation, data curation, visualization, and writing—review and editing.

Corresponding authors

Correspondence to Muhammed A. Hassan or Amr Kaood.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (XLSX 31 kb)

Appendices

Appendix 1: Correlations used for model validation

Sieder and Tate [47]:

$$\text{Nu} = 0.027{ }\text{Re}^{4/5} \text{Pr}^{1/3} \left( {\frac{\mu }{{\mu_{\text{w}} }}} \right)^{0.14} ;0.7 \le \text{Pr} \le 16700;\quad \text{Re} \ge 10^{4} { }$$
(38)

Dittus-Boelter [46]:

$$\text{Nu} = 0.023{ }\text{Re}^{0.23} \text{Pr}^{0.4} \left( {\frac{\mu }{{\mu_{\text{w}} }}} \right)^{0.14} ;\quad 0.6 \le \text{Pr} \le 160;\quad \text{Re} \ge 10^{4} { }$$
(39)

Gnielinski [48]:

$$\text{Nu} = 0.012{ }\left( {\text{Re}^{0.87} - 280} \right)\text{Pr}^{0.4} ;\quad 1.5 \le \text{Pr} \le 500;\quad 3000 \le \text{Re} \le 10^{5} { }$$
(40)

Filonenko [50]:

$$f = { }\left( {1.82{ }\log \text{Re} - 1.64} \right)^{ - 2} ;\quad 2300 < \text{Re} < 10^{6} { }$$
(41)

Petukhov [49]:

$$f = { }\left( {0.79{ }\ln \text{Re} - 1.64} \right)^{ - 2} ;\quad 3000 < \text{Re} < 5 \times 10^{6} { }$$
(42)

Blasius [51]:

$$f = { }0.316{\text{ Re}}^{ - 0.25} ;\quad {\text{Re}} \ge 2 \times { }10^{4} { }$$
(43)

Appendix 2: Full set of simulation results

The full set of simulation results and the regression coefficients of the RSM models are available in the electronic annex attached to the article’s online version.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.A., Kassem, M.A. & Kaood, A. Numerical investigation and multi-criteria optimization of the thermal–hydraulic characteristics of turbulent flow in conical tubes fitted with twisted tape insert. J Therm Anal Calorim 147, 6847–6868 (2022). https://doi.org/10.1007/s10973-021-10998-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10998-7

Keywords

Navigation