Skip to main content
Log in

Research progress on performance enhancement of heat pipes: a review

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Heat pipes are silent heat transfer devices that work on the motion of boiling and condensation process. They have been used in space crafts, heat recovery and ventilation, power conversion, energy, and electronics cooling applications. Over the past few eras, several necessary upgradations in heat pipe technologies have happened to implement new advanced fluids, design modification, and modified wick structures. Heat transfer enhancement due to these upgradations/implementations has been deliberated in many studies. In this paper, performance studies of heat pipes with deposition of nanoparticles and suitable coating made on the wick structure are reviewed. Various heat transfer mechanisms involved in heat pipes with nanoparticles deposition on the evaporator are summarized. Also, the various heat transfer mechanisms in heat pipes while using a nanofluid and a porous coating in the evaporator are summarized. This review shall offer a superior comprehension of the improvement required in cooling devices and help future research fraternity to develop advanced cooling gadgets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

VC:

Volume concentration

HTC:

Heat transfer coefficient

MHF:

Maximum heat flux

LHP:

Loop heat pipe

OHP:

Oscillating heat pipe

PHP:

Pulsating heat pipe

GHP:

Grooved heat pipe

TPCT:

Two-phase closed thermosyphon

SDBS:

Sodium dodecyl benzene sulfonate

MWCNT:

Multi-walled carbon nanotube

PMMA:

Polymethyl methacrylate

PVD:

Physical vapour deposition

PCFSW:

Porous copper fibre sintered wick

ESEM:

Environmental scanning electron microscope

PEI:

Polyethyleneimine

LBL:

Layer by layer

EDM:

Electrical discharge machining

CHF:

Critical heat flux

PFA:

Perfluoroalkoxy alkane

HC:

Hydrocarbons

HFC:

Hydrofluorocarbons

HFCL:

Hydrochlorofluorocarbons

R744:

Carbon dioxide

R717:

Ammonia

GWP:

Global warming potential

References

  1. Faghri A. Heat pipe science and technology. London: Taylor and Francis; 1995.

    Google Scholar 

  2. Xie K, Ji Y, Yu C, Wu M, Yi H. Experimental investigation on an aluminum oscillating heat pipe charged with water. Appl Therm Eng. 2019;162:114182. https://doi.org/10.1016/j.applthermaleng.2019.114182.

    Article  CAS  Google Scholar 

  3. Riehl RR. Copper-methanol heat pipes development for electronics cooling of surveillance equipment. In: 14th international energy conversion engineering conference 2016; 2016.

  4. Su Q, Chang S, Song M, Zhao Y, Dang C. An experimental study on the heat transfer performance of a loop heat pipe system with ethanol-water mixture as working fluid for aircraft anti-icing. Int J Heat Mass Transf. 2019;139:280–92. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.015.

    Article  CAS  Google Scholar 

  5. Naresh Y, Balaji C. Thermal performance of an internally finned two-phase closed thermosyphon with refrigerant R134a: a combined experimental and numerical study. Int J Therm Sci. 2018;126:281–93. https://doi.org/10.1016/j.ijthermalsci.2017.11.033.

    Article  CAS  Google Scholar 

  6. Ma L, Shang L, Zhong D, Ji Z. Experimental performance of a two-phase closed thermosyphon charged with hydrocarbons and freon refrigerants for renewable energy applications. Energy Procedia. 2017;105:5147–52. https://doi.org/10.1016/j.egypro.2017.03.1044.

    Article  CAS  Google Scholar 

  7. Li F, Gao J, Shi X, Xu L, Zhu K. Evaluation of R404a single loop thermosyphon for shaft cooling in motorized spindle. Appl Therm Eng. 2018;142:262–8. https://doi.org/10.1016/j.applthermaleng.2018.06.072.

    Article  CAS  Google Scholar 

  8. Patel VK. An efficient optimization and comparative analysis of ammonia and methanol heat pipe for satellite application. Energy Convers Manag. 2018;165:382–95.

    CAS  Google Scholar 

  9. Kiseev V, Sazhin O. The first ammonia loop heat pipe: long-life operation test. Int J Heat Mass Transf. 2017;115:1085–91. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.096.

    Article  CAS  Google Scholar 

  10. Li G, Diallo TMO, Akhlaghi YG, Shittu S, Zhao X, Ma X, et al. Simulation and experiment on thermal performance of a micro-channel heat pipe under different evaporator temperatures and tilt angles. Energy. 2019;179:549–57. https://doi.org/10.1016/j.energy.2019.05.040.

    Article  Google Scholar 

  11. Li M, Li L, Xu D. Effect of filling ratio and orientation on the performance of a multiple turns helium pulsating heat pipe. Cryogenics (Guildf). 2019;100:62–8. https://doi.org/10.1016/j.cryogenics.2019.04.006.

    Article  CAS  Google Scholar 

  12. Fonseca LD, Miller F, Pfotenhauer J. Experimental heat transfer analysis of a cryogenic nitrogen pulsating heat Pipe at various liquid fill ratios. Appl Therm Eng. 2018;130:343–53. https://doi.org/10.1016/j.applthermaleng.2017.11.029.

    Article  CAS  Google Scholar 

  13. Babu ER, Reddappa HN, Gnanendra Reddy GV. Effect of filling ratio on thermal performance of closed loop pulsating heat pipe. Mater Today Proc. 2018;5:22229–36. https://doi.org/10.1016/j.matpr.2018.06.588.

    Article  CAS  Google Scholar 

  14. Naresh Y, Shri Vignesh K, Balaji C. Experimental investigations of the thermal performance of self-rewetting fluids in internally finned wickless heat pipes. Exp Therm Fluid Sci. 2018;92:436–46. https://doi.org/10.1016/j.expthermflusci.2017.10.037.

    Article  CAS  Google Scholar 

  15. Anand AR. Investigations on effect of evaporator length on heat transport of axially grooved ammonia heat pipe. Appl Therm Eng. 2019;150:1233–42. https://doi.org/10.1016/j.applthermaleng.2019.01.078.

    Article  CAS  Google Scholar 

  16. Czajkowski C, Nowak AI, Błasiak P, Ochman A, Pietrowicz S. Experimental study on a large scale pulsating heat pipe operating at high heat loads, different adiabatic lengths and various filling ratios of acetone, ethanol, and water. Appl Therm Eng. 2020;165:114534. https://doi.org/10.1016/j.applthermaleng.2019.114534.

    Article  CAS  Google Scholar 

  17. Ömür C, Uygur AB, Horuz İ, Işık HG, Ayan S, Konar M. Incorporation of manufacturing constraints into an algorithm for the determination of maximum heat transport capacity of extruded axially grooved heat pipes. Int J Therm Sci. 2018;123:181–90.

    Google Scholar 

  18. Ömür C, Uygur AB, Işık HG, Horuz İ. Manufacturing phase embedded design optimization of extruded heat pipes for space applications. Appl Therm Eng. 2017;126:436–46.

    Google Scholar 

  19. Sezer N, Atieh MA, Koç M. A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids. Powder Technol. 2019;344:404–31. https://doi.org/10.1016/j.powtec.2018.12.016.

    Article  CAS  Google Scholar 

  20. Sidik NAC, Mohammed HA, Alawi OA, Samion S. A review on preparation methods and challenges of nanofluids. Int Commun Heat Mass Transf. 2014;54:115–25.

    CAS  Google Scholar 

  21. Tawfik MM. Experimental studies of nanofluid thermal conductivity enhancement and applications: a review. Renew Sustain Energy Rev. 2017;75:1239–53.

    CAS  Google Scholar 

  22. Raja M, Vijayan R, Dineshkumar P, Venkatesan M. Review on nanofluids characterization, heat transfer characteristics and applications. Renew Sustain Energy Rev. 2016;64:163–73. https://doi.org/10.1016/j.rser.2016.05.079.

    Article  CAS  Google Scholar 

  23. Rasheed AK, Khalid M, Rashmi W, Gupta TCSM, Chan A. Graphene based nanofluids and nanolubricants—review of recent developments. Renew Sustain Energy Rev. 2016;63:346–62. https://doi.org/10.1016/j.rser.2016.04.072.

    Article  CAS  Google Scholar 

  24. Suganthi KS, Rajan KS. Metal oxide nanofluids: review of formulation, thermo-physical properties, mechanisms, and heat transfer performance. Renew Sustain Energy Rev. 2017;76:226–55. https://doi.org/10.1016/j.rser.2017.03.043.

    Article  CAS  Google Scholar 

  25. Qamar A, Anwar Z, Ali H, Shaukat R, Imran S, Arshad A, et al. Preparation and dispersion stability of aqueous metal oxide nanofluids for potential heat transfer applications: a review of experimental studies. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10372-z.

    Article  Google Scholar 

  26. Kumar V, Sarkar J. Research and development on composite nanofluids as next-generation heat transfer medium. J Therm Anal Calorim. 2019;137:1133–54.

    CAS  Google Scholar 

  27. Mahmoodi M, Kandelousi S. Effects of thermophoresis and Brownian motion on nanofluid heat transfer and entropy generation. J Mol Liq. 2015;211:15–24. https://doi.org/10.1016/j.molliq.2015.06.057.

    Article  CAS  Google Scholar 

  28. Kamel MS, Lezsovits F, Hussein AK. Experimental studies of flow boiling heat transfer by using nanofluids: a critical recent review. J Therm Anal Calorim. 2019;138:4019–43. https://doi.org/10.1007/s10973-019-08333-2.

    Article  CAS  Google Scholar 

  29. Pinto RV, Fiorelli FAS. Review of the mechanisms responsible for heat transfer enhancement using nanofluids. Appl Therm Eng. 2016;108:720–39. https://doi.org/10.1016/j.applthermaleng.2016.07.147.

    Article  CAS  Google Scholar 

  30. Corumlu V, Ozsoy A, Ozturk M. Evaluation of heat transfer mechanisms in heat pipe charged with nanofluid. Arab J Sci Eng. 2019;44:5195–213.

    CAS  Google Scholar 

  31. Ganvir RB, Walke PV, Kriplani VM. Heat transfer characteristics in nanofluid—a review. Renew Sustain Energy Rev. 2017;75:451–60. https://doi.org/10.1016/j.rser.2016.11.010.

    Article  Google Scholar 

  32. Okonkwo EC, Wole-Osho I, Almanassra IW, Abdullatif YM, Al-Ansari T. An updated review of nanofluids in various heat transfer devices. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09760-2.

    Article  Google Scholar 

  33. Pandya NS, Shah H, Molana M, Tiwari AK. Heat transfer enhancement with nanofluids in plate heat exchangers: a comprehensive review. Eur J Mech B/Fluids. 2020;81:173–90. https://doi.org/10.1016/j.euromechflu.2020.02.004.

    Article  Google Scholar 

  34. Alhuyi Nazari M, Ahmadi MH, Ghasempour R, Shafii MB. How to improve the thermal performance of pulsating heat pipes: a review on working fluid. Renew Sustain Energy Rev. 2018;91:630–8.

    CAS  Google Scholar 

  35. Colangelo G, Favale E, Milanese M, de Risi A, Laforgia D. Cooling of electronic devices: nanofluids contribution. Appl Therm Eng. 2017;127:421–35. https://doi.org/10.1016/j.applthermaleng.2017.08.042.

    Article  CAS  Google Scholar 

  36. Sidik NAC, Adamu IM, Jamil MM, Kefayati GHR, Mamat R, Najafi G. Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review. Int Commun Heat Mass Transf. 2016;78:68–79.

    CAS  Google Scholar 

  37. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement: gaps and challenges. J Therm Anal Calorim. 2019;135:437–60. https://doi.org/10.1007/s10973-018-7070-9.

    Article  CAS  Google Scholar 

  38. Sureshkumar R, Mohideen ST, Nethaji N. Heat transfer characteristics of nanofluids in heat pipes: a review. Renew Sustain Energy Rev. 2013;20:397–410. https://doi.org/10.1016/j.rser.2012.11.044.

    Article  CAS  Google Scholar 

  39. Cacua K, Buitrago-Sierra R, Herrera B, Pabón E, Murshed SMS. Nanofluids’ stability effects on the thermal performance of heat pipes: a critical review. J Therm Anal Calorim. 2019;136:1597–614.

    CAS  Google Scholar 

  40. Alhuyi Nazari M, Ghasempour R, Ahmadi MH. A review on using nanofluids in heat pipes. J Therm Anal Calorim. 2019;137:1847–55.

    CAS  Google Scholar 

  41. Bumataria RK, Chavda NK, Panchal H. Current research aspects in mono and hybrid nanofluid based heat pipe technologies. Heliyon. 2019;5:e01627. https://doi.org/10.1016/j.heliyon.2019.e01627.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Aly WIA, Elbalshouny MA, Abd El-Hameed HM, Fatouh M. Thermal performance evaluation of a helically-micro-grooved heat pipe working with water and aqueous Al2O3 nanofluid at different inclination angle and filling ratio. Appl Therm Eng. 2017;110:1294–304. https://doi.org/10.1016/j.applthermaleng.2016.08.130.

    Article  CAS  Google Scholar 

  43. Ramachandran R, Ganesan K, Rajkumar MR, Asirvatham LG, Wongwises S. Comparative study of the effect of hybrid nanoparticle on the thermal performance of cylindrical screen mesh heat pipe. Int Commun Heat Mass Transf. 2016;76:294–300. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.030.

    Article  CAS  Google Scholar 

  44. Ghanbarpour M, Nikkam N, Khodabandeh R, Toprak MS. Improvement of heat transfer characteristics of cylindrical heat pipe by using SiC nanofluids. Appl Therm Eng. 2015;90:127–35. https://doi.org/10.1016/j.applthermaleng.2015.07.004.

    Article  CAS  Google Scholar 

  45. Shukla KN, Solomon AB, Pillai BC, Singh BJR, Kumar SS. Thermal performance of heat pipe with suspended nano-particles. Heat Mass Transf und Stoffuebertragung. 2012;48:1913–20.

    CAS  Google Scholar 

  46. Venkatachalapathy S, Kumaresan G, Suresh S. Performance analysis of cylindrical heat pipe using nanofluids—an experimental study. Int J Multiph Flow. 2015;72:188–97. https://doi.org/10.1016/j.ijmultiphaseflow.2015.02.006.

    Article  CAS  Google Scholar 

  47. Shukla KN, Solomon AB, Pillai BC, Ibrahim M. Thermal performance of cylindrical heat pipe using nanofluids. J Thermophys Heat Transf. 2010;24:796–802.

    CAS  Google Scholar 

  48. Saleh R, Putra N, Prakoso SP, Septiadi WN. Experimental investigation of thermal conductivity and heat pipe thermal performance of ZnO nanofluids. Int J Therm Sci. 2013;63:125–32. https://doi.org/10.1016/j.ijthermalsci.2012.07.011.

    Article  CAS  Google Scholar 

  49. Putra N, Septiadi WN, Rahman H, Irwansyah R. Thermal performance of screen mesh wick heat pipes with nanofluids. Exp Therm Fluid Sci. 2012;40:10–7.

    CAS  Google Scholar 

  50. Martin K, Sözen A, Çiftçi E, Ali HM. An experimental investigation on aqueous Fe–CuO hybrid nanofluid usage in a plain heat pipe. Int J Thermophys. 2020. https://doi.org/10.1007/s10765-020-02716-6.

    Article  Google Scholar 

  51. Ghanbarpour M, Nikkam N, Khodabandeh R, Toprak MS. Thermal performance of inclined screen mesh heat pipes using silver nanofluids. Int Commun Heat Mass Transf. 2015;67:14–20.

    CAS  Google Scholar 

  52. Kole M, Dey TK. Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids. Appl Therm Eng. 2013;50:763–70.

    CAS  Google Scholar 

  53. Ali HM. Analysis of heat pipe-aided graphene-oxide based nanoparticle-enhanced phase change material heat sink for passive cooling of electronic components. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09946-8.

    Article  Google Scholar 

  54. Harun MAB, Gunnasegaran PAL, Sidik NAC, Beriache M, Ghaderian J. Experimental investigation and optimization of loop heat pipe performance with nanofluids. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09641-8.

    Article  Google Scholar 

  55. Wu Q, Xu R, Wang R, Li Y. Effect of C60 nanofluid on the thermal performance of a flat-plate pulsating heat pipe. Int J Heat Mass Transf. 2016;100:892–8. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.008.

    Article  CAS  Google Scholar 

  56. Kang SW, Wang YC, Liu YC, Lo HM. Visualization and thermal resistance measurements for a magnetic nanofluid pulsating heat pipe. Appl Therm Eng. 2017;126:1044–50.

    CAS  Google Scholar 

  57. Akbari A, Saidi MH. Experimental investigation of nanofluid stability on thermal performance and flow regimes in pulsating heat pipe. J Therm Anal Calorim. 2019;135:1835–47. https://doi.org/10.1007/s10973-018-7388-3.

    Article  CAS  Google Scholar 

  58. Davari H, Goshayeshi HR, Öztop HF, Chaer I. Experimental investigation of oscillating heat pipe efficiency for a novel condenser by using Fe3O4 nanofluid. J Therm Anal Calorim. 2020;140:2605–14. https://doi.org/10.1007/s10973-019-09032-8.

    Article  CAS  Google Scholar 

  59. Wang PY, Chen YJ, Liu ZH. Performance improvement of wire-bonded mesh screen flat heat pipe using water-based nanofluid. Heat Mass Transf und Stoffuebertragung. 2016;52:2609–19.

    CAS  Google Scholar 

  60. Vijayakumar M, Navaneethakrishnan P, Kumaresan G, Kamatchi R. A study on heat transfer characteristics of inclined copper sintered wick heat pipe using surfactant free CuO and Al2O3 nanofluids. J Taiwan Inst Chem Eng. 2017;81:190–8.

    CAS  Google Scholar 

  61. Sadeghinezhad E, Akhiani AR, Metselaar HSC, Tahan Latibari S, Mehrali M, Mehrali M. Parametric study on the thermal performance enhancement of a thermosyphon heat pipe using covalent functionalized graphene nanofluids. Appl Therm Eng. 2020;175:115385. https://doi.org/10.1016/j.applthermaleng.2020.115385.

    Article  CAS  Google Scholar 

  62. Kumaresan G, Vijayakumar P, Ravikumar M, Kamatchi R, Selvakumar P. Experimental study on effect of wick structures on thermal performance enhancement of cylindrical heat pipes. J Therm Anal Calorim. 2019;136:389–400. https://doi.org/10.1007/s10973-018-7842-2.

    Article  CAS  Google Scholar 

  63. Khajehpour E, Reza A, Esmaeili A, Nabavi SMH. Experimental investigation of the effect of nanofluids on the thermal resistance of a thermosiphon L-shape heat pipe at different angles. Int Commun Heat Mass Transf. 2020;113:104549. https://doi.org/10.1016/j.icheatmasstransfer.2020.104549.

    Article  CAS  Google Scholar 

  64. Liu ZH, Li YY, Bao R. Compositive effect of nanoparticle parameter on thermal performance of cylindrical micro-grooved heat pipe using nanofluids. Int J Therm Sci. 2011;50:558–68. https://doi.org/10.1016/j.ijthermalsci.2010.11.013.

    Article  CAS  Google Scholar 

  65. Mehrali M, Sadeghinezhad E, Azizian R, Akhiani AR, Tahan Latibari S, Mehrali M, et al. Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe. Energy Convers Manag. 2016;118:459–73. https://doi.org/10.1016/j.enconman.2016.04.028.

    Article  CAS  Google Scholar 

  66. Chen YJ, Wang PY, Liu ZH. Application of water-based SiO2 functionalized nanofluid in a loop thermosyphon. Int J Heat Mass Transf. 2013;56:59–68. https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.048.

    Article  CAS  Google Scholar 

  67. Ghorabaee H, Reza M, Emami S, Shafahi M, Ghorabaee H, Reza M, et al. Effect of nanofluid and surfactant on thermosyphon heat pipe performance. Heat Transf Eng. 2019;41:1–14.

    Google Scholar 

  68. Aydın DY, Çiftçi E, Gürü M, Sözen A, Aydın DY. The impacts of nanoparticle concentration and surfactant type on thermal performance of A thermosyphon heat pipe working with bauxite nanofluid. Energy Sources Part A Recover Util Environ Effects. 2020;00:1–25.

    Google Scholar 

  69. Shin DR, Rhi SH, Lim TK, Jang JC. Comparative study on heat transfer characteristics of nanofluidic thermosyphon and grooved heat pipe. J Mech Sci Technol. 2011;25:1391–8.

    Google Scholar 

  70. Grab T, Gross U, Franzke U, Buschmann MH. Operation performance of thermosyphons employing titania and gold nanofluids. Int J Therm Sci. 2014;86:352–64. https://doi.org/10.1016/j.ijthermalsci.2014.06.019.

    Article  CAS  Google Scholar 

  71. Shanbedi M, Heris SZ, Baniadam M, Amiri A, Maghrebi M. Investigation of heat-transfer characterization of EDA-MWCNT/DI-water nanofluid in a two-phase closed thermosyphon. Ind Eng Chem Res. 2012;51:1423–8.

    CAS  Google Scholar 

  72. Wlazlak A, Zajaczkowski B, Woluntarski M, Buschmann MH. Influence of graphene oxide nanofluids and surfactant on thermal behaviour of the thermosyphon. J Therm Anal Calorim. 2019;136:843–55.

    CAS  Google Scholar 

  73. Khandekar S, Joshi YM, Mehta B. Thermal performance of closed two-phase thermosyphon using nanofluids. Int J Therm Sci. 2008;47:659–67.

    CAS  Google Scholar 

  74. Solomon AB, Ramachandran K, Asirvatham LG, Pillai BC. Numerical analysis of a screen mesh wick heat pipe with Cu/water nanofluid. Int J Heat Mass Transf. 2014;75:523–33. https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.007.

    Article  CAS  Google Scholar 

  75. Alizad K, Vafai K, Shafahi M. Thermal performance and operational attributes of the startup characteristics of flat-shaped heat pipes using nanofluids. Int J Heat Mass Transf. 2012;55:140–55. https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.050.

    Article  CAS  Google Scholar 

  76. Brahim T, Jemni A. Numerical case study of packed sphere wicked heat pipe using Al2O3 and CuO based water nanofluid. Case Stud Therm Eng. 2016;8:311–21. https://doi.org/10.1016/j.csite.2016.09.002.

    Article  Google Scholar 

  77. Cui W, Mao D, Lin B, Yang J. Field synergy analysis on the mechanism of heat transfer enhancement by using nanofluids. Case Stud Therm Eng. 2019;16:100554. https://doi.org/10.1016/j.csite.2019.100554.

    Article  Google Scholar 

  78. Solomon AB, Ramachandran K, Pillai BC. Thermal performance of a heat pipe with nanoparticles coated wick. Appl Therm Eng. 2012;36:106–12.

    CAS  Google Scholar 

  79. Jyothi Sankar PR, Venkatachalapathy S, Santhosh Kumar MC. Effect of hydrophilic coating on mesh wicks used in heat pipes. Surf Eng. 2020;36:680–6. https://doi.org/10.1080/02670844.2019.1695370.

    Article  CAS  Google Scholar 

  80. Li J, Lv L. Experimental studies on a novel thin flat heat pipe heat spreader. Appl Therm Eng. 2016;93:139–46.

    CAS  Google Scholar 

  81. Buffone C, Coulloux J, Alonso B, Schlechtendahl M, Palermo V, Zurutuza A, et al. Capillary pressure in graphene oxide nanoporous membranes for enhanced heat transport in Loop Heat Pipes for aeronautics. Exp Therm Fluid Sci. 2016;78:147–52.

    CAS  Google Scholar 

  82. Venkata Krishnan D, Udaya Kumar G, Suresh S, Thansekhar MR, Iqbal U. Evaluating the scale effects of metal nanowire coatings on the thermal performance of miniature loop heat pipe. Appl Therm Eng. 2018;133:727–38. https://doi.org/10.1016/j.applthermaleng.2018.01.052.

    Article  CAS  Google Scholar 

  83. Li H, Fu S, Li G, Fu T, Zhou R, Tang Y, et al. Effect of fabrication parameters on capillary pumping performance of multi-scale composite porous wicks for loop heat pipe. Appl Therm Eng. 2018;143:621–9.

    CAS  Google Scholar 

  84. Wu SC, Wang D, Lin WJ, Chen YM. Investigating the effect of powder-mixing parameter in biporous wick manufacturing on enhancement of loop heat pipe performance. Int J Heat Mass Transf. 2015;89:460–7. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.074.

    Article  CAS  Google Scholar 

  85. Tharayil T, Godson Asirvatham L, Rajesh S, Wongwises S. Effect of nanoparticle coating on the performance of a miniature loop heat pipe for electronics cooling applications. J Heat Transf. 2018;140:1–9.

    Google Scholar 

  86. Liu J, Zhang Y, Feng C, Liu L, Luan T. Study of copper chemical-plating modified polyacrylonitrile-based carbon fiber wick applied to compact loop heat pipe. Exp Therm Fluid Sci. 2019;100:104–13. https://doi.org/10.1016/j.expthermflusci.2018.07.008.

    Article  CAS  Google Scholar 

  87. Ling W, Zhou W, Yu W, Chu X. Capillary pumping performance of porous copper fiber sintered wicks for loop heat pipes. Appl Therm Eng. 2018;129:1582–94. https://doi.org/10.1016/j.applthermaleng.2017.10.150.

    Article  CAS  Google Scholar 

  88. Ji Y, Xu C, Ma H, Pan X. An experimental investigation of the heat transfer performance of an oscillating heat pipe with copper oxide (CuO) microstructure layer on the inner surface. J Heat Transf. 2013;135:8–11.

    Google Scholar 

  89. Hao TT, Ma XH, Lan Z, Li N. Experimental investigation of the effects of superhydrophobic and superhydrophilic surfaces on the pulsating heat pipe. J Eng Thermophys. 2015;36:2670–3.

    CAS  Google Scholar 

  90. Lim J, Kim SJ. Fabrication and experimental evaluation of a polymer-based flexible pulsating heat pipe. Energy Convers Manag. 2018;156:358–64. https://doi.org/10.1016/j.enconman.2017.11.022.

    Article  CAS  Google Scholar 

  91. Betancur L, Mangini D, Mantelli M, Marengo M. Experimental study of thermal performance in a closed loop pulsating heat pipe with alternating superhydrophobic channels. Therm Sci Eng Prog. 2020;17:100360. https://doi.org/10.1016/j.tsep.2019.100360.

    Article  Google Scholar 

  92. Jiang L, Huang Y, Tang Y, Li Y, Zhou W, Jiang L, et al. Fabrication and thermal performance of porous crack composite wick flattened heat pipe. Appl Therm Eng. 2014;66:140–7. https://doi.org/10.1016/j.applthermaleng.2014.01.034.

    Article  Google Scholar 

  93. Lee S, Lee J, Hwang H, Yeo T, Lee H, Choi W. Layer-by-layer assembled carbon nanotube-polyethyleneimine coatings inside copper-sintered heat pipes for enhanced thermal performance. Carbon N Y. 2018;140:521–32. https://doi.org/10.1016/j.carbon.2018.08.069.

    Article  CAS  Google Scholar 

  94. Vasiliev LL, Grakovich L, Rabetskii MI, Romanenkov V, Vasiliev L Jr, Ayel V, et al. Grooved heat pipes with a nanoporous deposit in an evaporator. Heat Pipe Sci Technol Int J. 2010;1:219–36.

    Google Scholar 

  95. Abdulshaheed AA, Wang P, Huang G, Li C. High performance copper-water heat pipes with nanoengineered evaporator sections. Int J Heat Mass Transf. 2019;133:474–86. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.114.

    Article  CAS  Google Scholar 

  96. Brusly Solomon A, Arul Daniel V, Ramachandran K, Pillai BC, Renjith Singh R, Sharifpur M, et al. Performance enhancement of a two-phase closed thermosiphon with a thin porous copper coating. Int Commun Heat Mass Transf. 2017;82:9–19. https://doi.org/10.1016/j.icheatmasstransfer.2017.02.001.

    Article  CAS  Google Scholar 

  97. Alammar AA, Al-Mousawi FN, Al-Dadah RK, Mahmoud SM, Hood R. Enhancing thermal performance of a two-phase closed thermosyphon with an internal surface roughness. J Clean Prod. 2018;185:128–36. https://doi.org/10.1016/j.jclepro.2018.03.020.

    Article  Google Scholar 

  98. Li SF, Bao YY, Wang PY, Liu ZH. Effect of nano-structure coating on thermal performance of thermosyphon boiling in micro-channels. Int J Heat Mass Transf. 2018;124:463–74.

    CAS  Google Scholar 

  99. Kim Y, Kim JS, Shin DH, You SM, Lee J. Enhanced thermal performance of a thermosyphon for waste heat recovery: microporous coating at evaporator and hydrophobic coating at condenser. Appl Therm Eng. 2020;175:115332. https://doi.org/10.1016/j.applthermaleng.2020.115332.

    Article  CAS  Google Scholar 

  100. Villa F, Marengo M, De Coninck J. Towards a durable polymeric internal coating for diabatic sections in wickless heat pipes. J Heat Transf. 2019;141:1–13.

    Google Scholar 

  101. Brusly Solomon A, Mathew A, Ramachandran K, Pillai BC, Karthikeyan VK. Thermal performance of anodized two phase closed thermosyphon (TPCT). Exp Therm Fluid Sci. 2013;48:49–57. https://doi.org/10.1016/j.expthermflusci.2013.02.007.

    Article  Google Scholar 

  102. Solomon AB, Ram Kumar AM, Ramachandran K, Pillai BC, Senthil Kumar C, Sharifpur M, et al. Characterisation of a grooved heat pipe with an anodised surface. Heat Mass Transf und Stoffuebertragung. 2017;53:753–63.

    Google Scholar 

  103. Renjith Singh R, Selladurai V, Ponkarthik PK, Solomon AB. Effect of anodization on the heat transfer performance of flat thermosyphon. Exp Therm Fluid Sci. 2015;68:574–81. https://doi.org/10.1016/j.expthermflusci.2015.06.017.

    Article  CAS  Google Scholar 

  104. Solomon AB, Roshan R, Vincent W, Karthikeyan VK, Asirvatham LG. Heat transfer performance of an anodized two-phase closed thermosyphon with refrigerant as working fluid. Int J Heat Mass Transf. 2015;82:521–9. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.034.

    Article  CAS  Google Scholar 

  105. Weng HC, Yang MH. Heat transfer performance enhancement of gravity heat pipes by growing AAO nanotubes on inner wall surface. Inventions. 2018;3:42.

    Google Scholar 

  106. Sadaghiani AK, Saadi NS, Parapari SS, Karabacak T, Keskinoz M, Koşar A. Boiling heat transfer performance enhancement using micro and nano structured surfaces for high heat flux electronics cooling systems. Appl Therm Sci. 2017;127:484–98. https://doi.org/10.1016/j.applthermaleng.2017.08.018.

    Article  CAS  Google Scholar 

  107. McHale JP, Garimella SV. Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces. Int J Multiph Flow. 2010;36:249–60.

    CAS  Google Scholar 

  108. Jones BJ, Garimella SV. Surface roughness effects on flow boiling in microchannels. J Therm Sci Eng Appl. 2009;1:1–9.

    Google Scholar 

  109. Orman ŁJ, Kapjor A, Vantúch M. Boiling heat transfer phenomenon on different structural coatings. Procedia Eng. 2017;192:649–53. https://doi.org/10.1016/j.proeng.2017.06.112.

    Article  CAS  Google Scholar 

  110. Moreno G, Jeffers JR, Narumanchi S. Effects of pressure and a microporous coating on HFC-245fa pool boiling heat transfer. J Heat Transf. 2014;136:1–10.

    Google Scholar 

  111. Fukiba K, Tokawa S, Kawashima H, Adachi H. Heat transfer enhancement in chilldown process with electrospun nanofiber coating. Cryogenics (Guildf). 2019;101:75–8. https://doi.org/10.1016/j.cryogenics.2019.06.004.

    Article  CAS  Google Scholar 

  112. Sathyamurthi V, Ahn HS, Banerjee D, Lau SC. Subcooled pool boiling experiments on horizontal heaters coated with carbon nanotubes. J Heat Transf. 2009;131:1–10.

    Google Scholar 

  113. Jo HS, An S, Nguyen XH, Kim YI, Bang BH, James SC, et al. Modifying capillary pressure and boiling regime of micro-porous wicks textured with graphene oxide. Appl Therm Eng. 2018;128:1605–10.

    CAS  Google Scholar 

  114. Jo HS, Kim MW, Kim TG, An S, Park HG, Lee JG, et al. Supersonically spray-coated copper meshes as textured surfaces for pool boiling. Int J Therm Sci. 2018;132:26–33.

    Google Scholar 

  115. Mohanraj M, Jayaraj S, Muraleedharan C. Environment friendly alternatives to halogenated refrigerants—a review. Int J Greenh Gas Control. 2009;3:108–19.

    CAS  Google Scholar 

  116. Mohanraj M, Muraleedharan C, Jayaraj S. A review on recent developments in new refrigerant mixtures for vapour compression-based refrigeration, air-conditioning and heat pump units. Int J Energy Res. 2011;35:647–69.

    CAS  Google Scholar 

  117. Mohanraj M, Abraham JDAP. Environment friendly refrigerant options for automobile air conditioners: a review. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10286-w.

    Article  Google Scholar 

Download references

Acknowledgements

This research work was financially supported by the DST–SERB under the Project Number DST/SERB/YSS/2015/001084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Brusly Solomon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudhan, A.L.S., Ramachandran, K., Solomon, A.B. et al. Research progress on performance enhancement of heat pipes: a review. J Therm Anal Calorim 147, 2847–2883 (2022). https://doi.org/10.1007/s10973-021-10732-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10732-3

Keywords

Navigation