Skip to main content
Log in

Facile fabrication of cyclodextrin-based and integrated flame retardant in intumescent flame-retarding polypropylene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A hydrophobic, β-cyclodextrin-based and halogen-free flame retardant (MCDPM) with three components in an integrated structure has been prepared by a facile method. Three traditional intumescence flame-retardant components were chemically combined into one compound. The aim of this paper was to improve the dispersion and flame retardancy in polypropylene (PP) via introducing a mono-component biomass-based compound. The structure and properties of MCDPM have been systematically investigated. To prepare samples for flammability testing, MCDPM particles were introduced into polypropylene (PP) via melt blending. The thermal stability of the blend was dramatically greater than that of PP. Notably, the limiting oxygen index (LOI) for PP/30 phr MCDPM blend was 26.4% and the blends could pass UL-94 V-1 ratings, demonstrating that the flame retardancy of PP could be enhanced by introducing MCDPM. Through the systematic analysis of the char residue, a possible intumescent flame-retardant mode of action has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Gonzalez-Calderon JA, Pérez-Pérez C, Rodríguez RYP, Fierro-González JC, Vallejo-Montesinos J. Silanization of di-n-octyldichlorosilane as a route to improve the integration of titanium dioxide in polypropylene. J Therm Anal Calorim. 2019;138:1069–79.

    Article  CAS  Google Scholar 

  2. Guo BY, Zhang TQ, Zhang WX, Dou YL. Influence of surface flame-retardant layer containing ammonium polyphosphate and expandable graphite on the performance of jute/polypropylene composites. J Therm Anal Calorim. 2019;135:2367–75.

    Article  CAS  Google Scholar 

  3. Zheng ZH, Liu YH, Dai BY, Meng CY, Guo ZX. Fabrication of cellulose-based halogen-free flame retardant and its synergistic effect with expandable graphite in polypropylene. Carbohyd Polym. 2019;213:257–65.

    Article  CAS  Google Scholar 

  4. Yang SQ, Bai SB, Duan WF, Wang Q. Preparation of composites based on recycled polypropylene and automotive shredder residue. Polym Int. 2018;67:936–45.

    Article  CAS  Google Scholar 

  5. Qin ZL, Yang RJ, Zhang WC, Li DH, Jiao QJ. Synergistic barrier effect of aluminum phosphate on flame retardant polypropylene based on ammonium polyphosphate/dipentaerythritol system. Mater Des. 2019;181:107913–22.

    Article  Google Scholar 

  6. Pappalardo S, Russo P, Acierno D, Rabe S, Schartel B. The synergistic effect of organically modified sepiolite in intumescent flame retardant polypropylene. Eur Polym J. 2016;76:196–207.

    Article  CAS  Google Scholar 

  7. Ren Y, Wei LF, Li WM, Yuan DD, Yang YY, Cai XF. Synthesis of silicic poly carbonyl urea and its flame-retardant effect on polypropylene for char forming. J Therm Anal Calorim. 2019;137:1267–77.

    Article  CAS  Google Scholar 

  8. Zhang C, Guo XD, Ma SM, Zheng YY, Xu JZ, Ma HY. Synthesis of a novel branched cyclophosphazene-PEPA flame retardant and its application on polypropylene. J Therm Anal Calorim. 2019;137:33–42.

    Article  CAS  Google Scholar 

  9. Qiu XQ, Li ZW, Li XH, Zhang ZJ. Flame retardant coatings prepared using layer by layer assembly: a review. Chem Eng J. 2018;334:108–22.

    Article  CAS  Google Scholar 

  10. Liu Y, Gao YS, Wang Q, Lin WR. The synergistic effect of layered double hydroxides with other flame retardant additives for polymer nanocomposites: a critical review. Dalton T. 2018;47:14827–40.

    Article  CAS  Google Scholar 

  11. Goda ES, Yoon KR, El-sayed SH, Hong SE. Halloysite nanotubes as smart flame retardant and economic reinforcing materials: a review. Thermochim Acta. 2018;669:173–84.

    Article  CAS  Google Scholar 

  12. Chen T, Hong J, Peng CH, Chen GR, Yuan CH, Xu YT, Zeng BR, Dai LZ. Superhydrophobic and flame retardant cotton modified with DOPO and fluorine-silicon-containing crosslinked polymer. Carbohyd Polym. 2019;208:14–21.

    Article  CAS  Google Scholar 

  13. Chen XF, Yun YL, Fan A, Yuan BH, Shang S, He S. The assembly nanohybrid of graphene with lamellar zirconium phenylphosphonate for improving flame retardancy and mechanical properties of polypropylene. Polym Compos. 2019;40:E1757–65.

    Article  CAS  Google Scholar 

  14. Gao S, Zhao X, Liu GS. Synthesis of an integrated intumescent flame retardant and its flame retardancy properties for polypropylene. Polym Degrad Stabil. 2017;138:106–14.

    Article  CAS  Google Scholar 

  15. Xu B, Wu X, Ma W, Qian LJ, Xin F, Qiu Y. Synthesis and characterization of a novel organic-inorganic hybrid char-forming agent and its flame-retardant application in polypropylene composites. J Anal Appl Pyrol. 2018;134:231–42.

    Article  CAS  Google Scholar 

  16. Qin ZL, Li DH, Li Q, Yang RJ. Effect of nano-aluminum hydroxide on mechanical properties, flame retardancy and combustion behavior of intumescent flame retarded polypropylene. Mater Design. 2016;89:988–95.

    Article  CAS  Google Scholar 

  17. Wang HF, Li B. Synergistic effects of β-cyclodextrin containing silicone oligomer on intumescent flame retardant polypropylene system. Polym Advan Technol. 2010;21:691–7.

    Article  CAS  Google Scholar 

  18. Zhang LC, Wu W, Li JH, Wang Z, Wang L, Chen SY. New insight into the preparation of flame-retardant thermoplastic polyether ester utilizing β-cyclodextrin as a charring agent. High Perform Polym. 2016;29:1–9.

    Google Scholar 

  19. Zhao XM, Xiao D, Alonso JP, Wang DY. Inclusion complex between beta-cyclodextrin and phenylphosphonicdiamide as novel bio-based flame retardant to epoxy: Inclusion behavior, characterization and flammability. Mater Des. 2017;114:623–32.

    Article  CAS  Google Scholar 

  20. Wang XF, Xing WY, Wang BB, Wen PY, Song L, Hu Y, Zhang P. Comparative study on the effect of beta-cyclodextrin and polypseudorotaxane as carbon sources on the thermal stability and flame retardance of polylactic acid. Ind Eng Chem Res. 2013;52:3287–94.

    Article  CAS  Google Scholar 

  21. Zheng ZH, Zhang L, Liu Y, Wang HY. A facile and novel modification method of β-cyclodextrin and its application in intumescent flame-retarding polypropylene with melamine phosphate and expandable graphite. J Polym Res. 2016;23:74–88.

    Article  CAS  Google Scholar 

  22. Zhu CJ, He MS, Liu Y, Cui JG, Tai QL, Song L, Hu Y. Synthesis and application of a mono-component intumescent flame retardant for polypropylene. Polym Degrad Stabil. 2018;151:144–51.

    Article  CAS  Google Scholar 

  23. Xia Y, Jin FF, Mao ZW, Guan Y, Zheng AN. Effects of ammonium polyphosphate to pentaerythritol ratio on composition and properties of carbonaceous foam deriving from intumescent flame-retardant polypropylene. Polym Degrad Stabil. 2014;107:64–73.

    Article  CAS  Google Scholar 

  24. Sun ZZ, Hou YB, Hu Y, Hu WZ. Effect of additive phosphorus-nitrogen containing flame retardant on char formation and flame retardancy of epoxy resin. Mater Chem Phy. 2018;214:154–64.

    Article  CAS  Google Scholar 

  25. Duan LJ, Yang HY, Song L, Hou YB, Wang W, Gui Z, Hu Y. Hyperbranched phosphorus/nitrogen-containing polymer in combination with ammonium polyphosphate as a novel flame retardant system for polypropylene. Polym Degrad Stabil. 2016;134:179–85.

    Article  CAS  Google Scholar 

  26. Bourbigot S, Bras M, Gengembre L, Delobel R. XPS study of an intumescent coating application to the ammonium polyphosphate/pentaerythritol fire-retardant system. Appl Surf Sci. 1994;81:299–307.

    Article  CAS  Google Scholar 

  27. Zhao CX, Liu Y, Wang DY, Wang DL, Wang YZ. Synergistic effect of ammonium polyphosphate and layered double hydroxide on flame retardant properties of poly(vinyl alcohol). Polym Degrad Stabil. 2008;93:1323–31.

    Article  CAS  Google Scholar 

  28. Li YH, Sun YJ, Dong F, Ho WK. Enhancing the photocatalytic activity of bulk g-C3N4 by introducing mesoporous structure and hybridizing with grapheme. J Colloid Interf Sci. 2014;436:29–36.

    Article  CAS  Google Scholar 

  29. Feng JX, Zhang XM, Ma SQ, Xiong Z, Zhang CZ, Jiang YH, Zhu J. Syntheses of metallic cyclodextrins and their use as synergists in a poly(vinyl alcohol)/intumescent flame retardant system. Ind Eng Chem Res. 2013;52:2784–92.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (Grant Nos. 52005050), Research Project of Science and Technology in Education Department of Jilin Province (Grant No. JJKH20181023KJ) and Foundation of State Key Laboratory of Automotive Simulation and Control (Grant No. 20201105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaihang Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Xia, Y., Liao, C. et al. Facile fabrication of cyclodextrin-based and integrated flame retardant in intumescent flame-retarding polypropylene. J Therm Anal Calorim 146, 2375–2386 (2021). https://doi.org/10.1007/s10973-020-10455-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10455-x

Keywords

Navigation