Skip to main content
Log in

Numerical simulation and parametric analysis of latent heat thermal energy storage system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents the numerical analysis of the transient performance of the latent heat thermal energy storage unit established on finite difference method. The storage unit consists of a shell and tube arrangement with phase change material (PCM) filled in the shell space and the heat transfer fluid (HTF) flowing in the inner tube. The heat exchange between the HTF, wall and PCM has been investigated by developing a 2-D fully implicit numerical model for the storage module and solving the complete module as a conjugate problem using enthalpy transforming method. A comparative investigation of the total melting time of the PCM has been performed based on natural convection in liquid PCM during the charging process. The novelty of this paper lies in the fact it includes convection in PCM and this investigation includes a detailed parametric study which can be used as a reference to design latent heat storage. The results indicate that natural convection accelerates the melting process by a significant amount of time. In order to optimize the design of the thermal storage unit, parametric study has been accompanied to analyze the influence of various HTF working conditions and geometric dimensions on the total melting time of the PCM. Another important feature considered in this work is the influence of the inner wall of the tube carrying the HTF on the entire melting time of the PCM. An error of around 7.2% is reported when inner wall of the tube is ignored in the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

a :

Thermal diffusivity (m2 s−1)

c :

Specific heat (J kg−1 K−1)

D :

Diameter of tube (m)

G :

Dimensionless acceleration due to gravity

h :

Convection heat transfer coefficient

H :

Volume enthalpy (J m−3)

L :

Length of tube (m)

m :

Mass flow rate (kg s−1)

P :

Dimensionless pressure

p :

Pressure (Pa)

Pr:

Prandtl number

q :

Latent heat capacity (J kg−1)

R :

Dimensionless coordinates along radial direction

r :

Coordinate along radial direction (m)

Re:

Reynolds number

St:

Stefan number

T :

Temperature (K)

t :

Time (s)

V :

Volume

W :

Dimensionless velocity

w :

Velocity m s−1

X :

Dimensionless coordinate along axial direction

χ :

Dimensionless enthalpy

\({ \leftthreetimes }\) :

Thermal conductivity (W mK−1)

Θ :

Dimensionless temperature

ρ :

Density (kg m−3)

Τ :

Dimensionless time

μ :

Dynamic viscosity (Pa-s)

ϑ :

Kinematic viscosity (m2 s−1)

¥:

Melt fraction

f:

HTF

ii:

Internal radius of inner tube

io:

External radius of inner tube

in:

Inlet

initp:

Initial of PCM

initf:

Initial of HTF

initw:

Initial of wall

l:

Liquid phase of PCM

m:

Melting

mmin:

Minimum melting

oi:

Internal radius of outer shell

oo:

External radius of outer shell

out:

Outlet

p:

PCM

R:

Dimensionless coordinate along radial direction

r:

Coordinate along radial direction

s:

Solid phase of PCM

w:

Wall

x:

Coordinate along axial direction

References

  1. Nithyanandam K, Pitchumani R. Numerical analysis of latent thermal energy storage system with embedded thermosyphons. In: Proceedings of the ASME 2012 6th international conference on energy sustainability ES2012 July 23–26, 2012, San Diego, CA, USA, (2012) 1–10. https://doi.org/10.1115/es2012-91416.

  2. Farid MM, Khudhair AM, Ali S, Razack K. A review on phase change energy storage: materials and applications. Energy Convers Manag. 2004;45(9–10):1597–615.

    Article  CAS  Google Scholar 

  3. Kumar A, Shukla SK. A review on thermal energy storage unit for solar thermal power plant application. Energy Procedia. 2015;74:462–9.

    Article  Google Scholar 

  4. Thakare KA, Bhave AG. Review on latent heat storage and problems associated with phase change materials. Int J Res Appl Sci Eng Technol. 2015;4:176–82.

    Google Scholar 

  5. Jegadheeswaran S, Pohekar SD. Performance enhancement in latent heat thermal storage system: a review. Renew Sustain Energy Rev. 2009;13:2225–44.

    Article  CAS  Google Scholar 

  6. Zhang Y, Faghri V. Heat transfer enhancement in latent heat thermal energy storage system by using an external radial finned tube. J Enhanc Heat Transf. 2000;3(2):119–27.

    Article  Google Scholar 

  7. Pirasaci T, Goswami DY. Influence of design on performance of a latent heat storage system for a direct steam generation power plant. Appl Energy. 2016;162:644–52.

    Article  Google Scholar 

  8. Sari A, Kaygusuz K. Thermal energy storage system using stearic acid as a phase change material. J Sol Energy. 2001;71(6):365–76.

    Article  CAS  Google Scholar 

  9. Mehta DS, Solanki K, Rathod MK, Banerjee J. Thermal performance of shell and tube latent heat storage unit: comparative assessment of horizontal and vertical orientation. J Energy Storage. 2019;23:344–62.

    Article  Google Scholar 

  10. Rathod MK, Banerjee J. Numerical investigation on latent heat storage unit of different configurations. Int J Mech Aerospace Ind Mech Manuf Eng. 2011;5:652–7.

    Google Scholar 

  11. Seddegh S, Tehrani SSM, Wang X, Cao F, Taylor RA. Comparison of heat transfer between cylindrical and conical vertical shell-and-tube latent heat thermal energy storage systems. Appl Therm Eng. 2018;130:1349–62.

    Article  Google Scholar 

  12. Rösler F, Brüggemann D. Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments. Heat Mass Transf. 2011;47:1027–33.

    Article  Google Scholar 

  13. Parry AJ, Eames PC, Agyenim FB. Modeling of thermal energy storage shell-and- tube heat exchanger. Heat Transf Eng. 2014;35(1):1–14.

    Article  CAS  Google Scholar 

  14. Bellan S, Gonzalez-Aguilar J, Romero M, Rehman MM, Goswami DY, Stefanakos EK. Numerical investigation of PCM-based thermal energy storage system. Energy Procedia. 2015;69:758–68.

    Article  CAS  Google Scholar 

  15. Trp A, Lenic K, Frankovic B. A study of transient phase-change heat transfer during charging and discharging of the latent thermal energy storage unit. 2004; Corpus ID: 56406046.

  16. Vyshak NR, Jilani G. Numerical analysis of latent heat thermal energy storage system. Energy Convers Manag. 2007;48:2161–8.

    Article  CAS  Google Scholar 

  17. Trp A. An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. J Sol Energy. 2005;79:648–60.

    Article  CAS  Google Scholar 

  18. Bagheri GH, Mehrabian MA, Hooman K. Numerical study of the transient behaviour of a thermal storage module containing phase-change material. Proc IMechE Part A J Power Energy. 2010;224:505–16.

    Article  Google Scholar 

  19. Reddy RM, Nallusamy N, Reddy KH. Experimental studies on phase change material-based thermal energy storage system for solar water heating applications. J Fundam Renew Energy Appl. 2012;2:1–6.

    Google Scholar 

  20. Adine HA, Qarnia HE. Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials. Appl Math Model. 2009;33(4):2132–44.

    Article  Google Scholar 

  21. Bellecci C, Conti M. Phase change thermal storage: transient behaviour analysis of a solar receiver/storage module using the enthalpy method. Int J Heat Mass Transf. 1993;36(8):2157–63.

    Article  CAS  Google Scholar 

  22. Behzadi S, Farid MM. Energy storage for efficient energy utilization in buildings. In: International high-performance buildings conference 2010;1–8.

  23. Lamberg P. Mathematical modelling and experimental investigation of melting and solidification in a finned phase change material storage report. Report A8, Helsinki University of Technology, Ph.D. Thesis, 2003.

  24. Dhaidan NS, Khodadadi JM. Melting and convection of phase change materials in different shape containers: a review. Renew Sustain Energy Rev. 2015;43:449–77.

    Article  CAS  Google Scholar 

  25. Lamberg P, Lehtiniemi R, Henell A. Numerical and experimental investigation of melting and freezing processes in phase change material storage. Int J Therm Sci. 2004;43(3):277–87.

    Article  Google Scholar 

  26. Voller VR, Prakash C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int J Heat Mass Transf. 1987;30(8):1709–19.

    Article  CAS  Google Scholar 

  27. Tao YB, He YL. Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube. Appl Energy. 2015;143:38–46.

    Article  Google Scholar 

  28. Heat A, Zhang Y, Howell JR. Natural convection in enclosures. Adv. Heat Transf. 2010;13:1–43.

    Google Scholar 

  29. Yang H, He Y. Solving heat transfer problems with phase change via smoothed effective heat capacity and element-free galerkin methods. Int Commun Heat Mass Transf. 2010;37(4):385–92.

    Article  CAS  Google Scholar 

  30. Prabakaran R, Kumar JPN, Lal DM, Selvam C, Harish S. Constrained melting of graphene-based phase change nanocomposites inside a sphere. J Therm Anal Calorim. 2020;139:941–52.

    Article  CAS  Google Scholar 

  31. Ye WB. Melting process in a rectangular thermal storage cavity heated from vertical walls. J Therm Anal Calorim. 2016;123:873–80.

    Article  CAS  Google Scholar 

  32. Ye WB. Enhanced latent heat thermal energy storage in the double tubes using fins. J Therm Anal Calorim. 2017;128:533–40.

    Article  CAS  Google Scholar 

  33. Omara AAM, Abuelnuor AAA, Mohammed HA, Khiadani M. Phase change materials (PCMs) for improving solar still productivity: a review. J Therm Anal Calorim. 2020;139:1585–617.

    Article  CAS  Google Scholar 

  34. Dileep K, Arun KR, Dishnu D, Srinivas M, Jayaraj S. Numerical studies on the effect of location and number of containers on the phase transition of PCM-integrated evacuated tube solar water heater. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09151-2.

    Article  Google Scholar 

  35. Pramothraj M, Santosh R, Swaminathan MR, Kumaresan G. Study of effect of Al and Cu microparticles dispersed in D-Mannitol PCM for effective solar thermal energy storage. J Therm Anal Calorim. 2020;139:895–904.

    Article  CAS  Google Scholar 

  36. Kabeel AE, Sathyamurthy R, El-Agouz SA, Manokar AM, El-Said EMS. Experimental studies on inclined PV panel solar still with cover cooling and PCM. J Therm Anal Calorim. 2019;138:3987–95.

    Article  CAS  Google Scholar 

  37. Harikrishnan S, Deepak K, Kalaiselvam S. Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems. J Therm Anal Calorim. 2014;115:1563–71.

    Article  CAS  Google Scholar 

  38. Kumar PM, Mylsamy K. Experimental investigation of solar water heater integrated with a nanocomposite phase change material. J Therm Anal Calorim. 2019;136:121–32.

    Article  Google Scholar 

  39. Senthilkumar M, Balasubramanian KR, Kottala RK, Sivapirakasam SP, Maheswari L. Characterization of form-stable phase-change material for solar photovoltaic cooling. J Thermal Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09521-1.

    Article  Google Scholar 

  40. Paria S, Baradaran S, Amiri A, Sarhan AAD, Kazi SN. Performance evaluation of latent heat energy storage in horizontal shell-and-finned tube for solar application. J Therm Anal Calorim. 2016;123:1371–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvanjan Bhattacharyya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, M.K., Tamar, N. & Bhattacharyya, S. Numerical simulation and parametric analysis of latent heat thermal energy storage system. J Therm Anal Calorim 141, 2511–2526 (2020). https://doi.org/10.1007/s10973-020-10175-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10175-2

Keywords

Navigation