Skip to main content
Log in

Physicochemical and thermal analysis of argan fruit residues (AFRs) as a new local biomass for bioenergy production

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A detailed investigation of the physicochemical properties and thermal characteristics of argan fruit residues (AFRs) was carried out to identify their potential application as biofuels. This experimental study covered the four main by-products of argan fruit: argan pulp (AP), argan nut shell (ANS), argan oilcake (AOC) and argan deoiled cake (ADC). Physicochemical analysis was performed to characterize biomass-based materials. Thermogravimetric techniques (TG, DTG and DTA) were applied to assess structural decomposition, biomass reactivity and combustion parameters. Lastly, thermal conductivity and diffusivity between 25 and 100 °C were measured using the transient plane source technique (TPS). The study shows that heating values were in the range of 17–22.5 MJ kg−1, which is comparable to those of wood pellets and lignite coal. The maximum ash content was found in AP and the minimum in ANS. The residual oil of AOC was found to affect the drying process and calorific value. Thermal analysis showed that ANS has the highest ignition temperature and thermal conductivity values and therefore appears to be the most reactive material. Our data show that ANS has a good potential to produce heat through direct combustion. A pretreatment appears to be necessary to improve the characteristics of AP and AOC in order to make them suitable biofuels in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(Data adapted from Refs. [13, 29])

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

V :

Volume (m3)

M :

Moisture (%)

HHV:

Higher heating value (MJ kg−1)

NHV:

Net heating value (MJ kg1)

PD:

Particle density (kg m3)

BD:

Bulk density (kg m3)

ED:

Energetic density (GJ m3)

R :

Reactivity (% min1 °C1)

D :

Ignition index

S :

Combustion index

r :

Rate (% min1)

T :

Temperature (°C)

t :

Time (s)

TR:

Temperature range (°C)

ρ pow :

Powder density (kg m3)

ρ tr :

True density (kg m3)

ρ :

Density (kg m3)

λ :

Thermal conductivity (W m1 K1)

α :

Thermal diffusivity (mm2 s1)

max:

Maximal

i:

Ignition

a:

Average

b:

Burnout

AFRs:

Argan fruit residues

AP:

Argan pulp

ANS:

Argan nut shell

AOC:

Argan oilcake

ADC:

Argan deoiled cake

TGA:

Thermogravimetric analysis

DTG:

Derivative of thermogravimetric

DTA:

Differential thermal analysis

TPS:

Transient plane source

VM:

Volatile matter

FC:

Fixed carbon

arb:

As-received basis

db:

Dry basis

References

  1. Alain AV, Nasib Q, Hans PB, Yukawa H. Biomass to biofuels: Strategies for global industries. 1st ed. Amsterdam: Wiley; 2010.

    Google Scholar 

  2. Reddy BVS, Ramesh S, Ashok Kumar A, Wani SP, Ortiz R, Ceballos H, Sreedevi TK. Bio-fuel crops research for energy security and rural development in developing countries. BioEnergy Res. 2008;1:248–58.

    Article  Google Scholar 

  3. Charrouf Z. Valorisation des produits de l’arganier pour une gestion durable des zones arides du sud-ouest marocain. Actes du 4ème Colloq Prod Nat d’origine végétale. 1999;195–209.

  4. Nill D, Böhnert E. Value chains for the conservation of biological diversity for food and agriculture. 2006. pp. 37–50.

  5. Zhar N, Naamani K, Dihazi A, Jaiti F, El Keroumi A. Comparative analysis of some biochemical parameters of argan pulp morphotypes (Argania spinosa (L.) skeels) during maturity and according to the continentality in Essaouira region (Morocco). Physiol Mol Biol Plants. 2016;22:361–70.

    Article  CAS  Google Scholar 

  6. Charrouf Z, Hilali M, Jauregui O, Soufiaoui M, Guillaume D. Separation and characterization of phenolic compounds in argan fruit pulp using liquid chromatography-negative electrospray ionization tandem mass spectroscopy. Food Chem. 2007;100:1398–401.

    Article  CAS  Google Scholar 

  7. Ait Laaziz S, Raji M, Hilali E, Essabir H, Rodrigue D, Bouhfid R, Qaiss A. Bio-composites based on polylactic acid and argan nut shell: production and properties. Int J Biol Macromol. 2017;104:30–42.

    Article  Google Scholar 

  8. Rahib Y, Sarh B, Bostyn S, Bonnamy S, Boushaki T, Chaoufi J. Non-isothermal kinetic analysis of the combustion of argan shell biomass. Mater Today Proc. 2020;24:11–6.

    Article  CAS  Google Scholar 

  9. Rahib Y, Elorf A, Sarh B, Bonnamy S, Chaoufi J, Ezahri M. Experimental analysis on thermal characteristics of argan nut shell (ANS) biomass as a green energy resource. Int J Renew Energy Res. 2019;9:1606–15.

    Google Scholar 

  10. Singh YD, Mahanta P, Bora U. Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renew Energy. 2017;103:490–500.

    Article  CAS  Google Scholar 

  11. Cai J, He Y, Yu X, Banks SW, Yang Y, Zhang X, Yu Y, Liu R, Bridgwater AV. Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew Sustain Energy Rev. 2017;76:309–22.

    Article  CAS  Google Scholar 

  12. Garcia R, Pizarro C, Lavin AG, Bueno JL. Biomass sources for thermal conversion. Techno-Econ Overv Fuel. 2017;195:182–9.

    CAS  Google Scholar 

  13. Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the chemical composition of biomass. Fuel. 2010;89:913–33.

    Article  CAS  Google Scholar 

  14. Obernberger I, Thek G. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenergy. 2004;27:653–69.

    Article  CAS  Google Scholar 

  15. Mansaray KG, Ghaly AE. Physical and thermochemical properties of rice husk. Energy Sources. 1997;19:989–1004.

    Article  CAS  Google Scholar 

  16. El May Y, Jeguirim M, Dorge S, Trouvé G, Said R. Study on the thermal behavior of different date palm residues: characterization and devolatilization kinetics under inert and oxidative atmospheres. Energy. 2012;44:702–9.

    Article  Google Scholar 

  17. Mansaray KG, Ghaly AE. Determination of reaction kinetics of rice husks in air using thermogravimetric analysis. Energy Sources. 1999;21:899–911.

    Article  CAS  Google Scholar 

  18. Sjöström J, Blomqvist P. Direct measurements of thermal properties of wood pellets: elevated temperatures, fine fractions and moisture content. Fuel. 2014;134:460–6.

    Article  Google Scholar 

  19. Zhu WK, Lin H, Cao Y, Li B. Thermal properties measurement of cut tobacco based on TPS method and thermal conductivity model. J Therm Anal Calorim. 2014;116:1117–23.

    Article  CAS  Google Scholar 

  20. Lönnermark A, Persson H, Blomqvist P, Larsson I, Rahm M, Johan S. Small-scale methods for assessment of risk for self-heating of biomass pellets. SP Report; 2012.

  21. Sait HH, Hussain A, Salema AA, Ani FN. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour Technol. 2012;118:382–9.

    Article  CAS  Google Scholar 

  22. Mann BF, Chen H, Herndon EM, Chu RK, Tolic N, Portier EF, Chowdhury TR, Robinson EW, Callister SJ, Wullschleger SD, Graham DE, Liang L. Indexing permafrost soil organic matter degradation using high-resolution mass spectrometry. PLoS One. 2015;10.

  23. Loo S V, Koppejan J. The handbook of biomass combustion and co-firing. Earthscan; 2008. pp. 7–14.

  24. Reis JS, Araujo RO, Lima VMR, Queiroz LS, da Costa CEF, Pardauil JJR, Chaar JS, Rocha Filho GN, de Souza LKC. Combustion properties of potential Amazon biomass waste for use as fuel. J Therm Anal Calorim. 2019;138:3535–9.

    Article  CAS  Google Scholar 

  25. Li XG, Ma BG, Xu L, Hu ZW, Wang XG. Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochim Acta. 2006;441:79–83.

    Article  CAS  Google Scholar 

  26. Paniagua S, Calvo LF, Escapa C, Coimbra RN, Otero M, García AI. Chlorella sorokiniana thermogravimetric analysis and combustion characteristic indexes estimation. J Therm Anal Calorim. 2018;131:3139–49.

    Article  CAS  Google Scholar 

  27. Pratap A, Sharma K. Applications of some thermo-analytical techniques to glasses and polymers. J Therm Anal Calorim. 2012;107:171–82.

    Article  CAS  Google Scholar 

  28. Berge A, Adl-Zarrabi B, Hagentoft CE. Determination of specific heat capacity by transient plane source. Front Archit Res. 2013;2:476–82.

    Article  Google Scholar 

  29. Bu C, Leckner B, Chen X, Pallarès D, Liu D, Gómez-Barea A. Devolatilization of a single fuel particle in a fluidized bed under oxy-combustion conditions. Part A Exp Res Combust Flame. 2015;162:797–808.

    Article  CAS  Google Scholar 

  30. Gil MV, Casal D, Pevida C, Pis JJ, Rubiera F. Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresour Technol. 2010;101:5601–8.

    Article  CAS  Google Scholar 

  31. Yi Q, Qi F, Cheng G, Zhang Y, Xiao B, Hu Z, Liu S, Cai H, Xu S. Thermogravimetric analysis of co-combustion of biomass and biochar. J Therm Anal Calorim. 2013;112:1475–9.

    Article  CAS  Google Scholar 

  32. Koukouch A, Idlimam A, Asbik M, Sarh B, Izrar B, Bostyn S, Bah A, Ansari O, Zegaoui O, Amine A. Experimental determination of the effective moisture diffusivity and activation energy during convective solar drying of olive pomace waste. Renew Energy. 2017;101:565–74.

    Article  Google Scholar 

  33. Folayan AJ, Anawe PAL. Synthesis and characterization of Argania spinosa (Argan oil) biodiesel by sodium hydroxide catalyzed transesterification reaction as alternative for petro-diesel in direct injection, compression ignition engines. Heliyon. 2019;5:e02427.

    Article  Google Scholar 

  34. Abdelaziz M, Aouda N, Mahdi KZ. In vitro estimate of the energy value of Argania spinosa L. from Algeria. Livest Res Rural Dev. 2014;26.

  35. Elabed A. Réactivité thermique et cinétique de dégradation du bois d’arganier Application à l’élaboration de charbon actif par activation chimique à l’acide phosphorique. Mohammed V– Agdal; 2007. pp. 83–7.

  36. Shah MA, Khan MNS, Kumar V. Biomass residue characterization for their potential application as biofuels. J Therm Anal Calorim. 2018;134:2137–45.

    Article  CAS  Google Scholar 

  37. Essabir H. Bio-composites à base de coque de noix d’arganier: Mise en œuvre, caractérisation et modélisation du comportement mécanique. Ibn Zohr; 2014. pp. 76–86

  38. Suleiman BM, Larfeldt J, Leckner B, Gustavsson M. Thermal conductivity and diffusivity of wood. Wood Sci Technol. 1999;33:465–73.

    Article  CAS  Google Scholar 

  39. Ai Q, Hu ZW, Liu M, Xia XL, Xie M. Influence of sensor orientations on the thermal conductivity measurements of liquids by transient hot disk technique. J Therm Anal Calorim. 2017;128:289–300.

    Article  CAS  Google Scholar 

  40. Tatane M, Elminor H, Ayeb M, Lacherai A, Feddaoui M, Aitnouh F, Boukhattem L. Effect of argan nut shell powder on thermal and mechanical behavior of compressed earth blocks. Int J Appl Eng Res. 2018;13:4740–50.

    Google Scholar 

  41. Adl-Zarrabi B, Boström L, Wickström U. Using the TPS method for determining the thermal properties of concrete and wood at elevated temperature. Fire Mater. 2006;30:359–69.

    Article  CAS  Google Scholar 

  42. Kayode CA. Ludwig’s applied process design for chemical and petrochemical plants. 4th ed. Amsterdam: Elsevier; 2007. p. 103–109.

    Google Scholar 

  43. Khalfi A, Trouvé G, Delfosse L, Delobel R. Influence of apparent density during the burning of wood waste furniture. J Fire Sci. 2004;22:229–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their great thanks and appreciation to Dr. Ahmed IHLAL (LMER Agadir, Morocco) who allowed us to experiment the thermal properties of the studied biomasses at the hot disk facility. The financial support provided for this Project by the Region Centre Val de Loire, Project Code: VERA-P2 (No. 2015-00099702), is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Rahib.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahib, Y., Sarh, B., Chaoufi, J. et al. Physicochemical and thermal analysis of argan fruit residues (AFRs) as a new local biomass for bioenergy production. J Therm Anal Calorim 145, 2405–2416 (2021). https://doi.org/10.1007/s10973-020-09804-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09804-7

Keywords

Navigation