Skip to main content
Log in

Characterization of cassava biomass using differential scanning calorimetry and thermogravimetry for energy purposes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Most of the agricultural industries generate daily waste, which due to toxicity or quantity deserve special attention. The cassava starch produces a significant quantity of residues, which must be rationally used for minimizing the environmental impact of the agricultural activities. The present study aims to enhance the use of this solid residue. We analyzed the cassava bagasse by means of the following techniques: thermogravimetric analysis (TG) and differential scanning calorimeters (DSC). It was addressed the effects of operational conditions (final temperature, heating rate, atmosphere, air flow and size of particles). The cassava bagasse samples collected in a cooperative production facility in Paraty-RJ were characterized using TGA/DSC in order to describe the thermal behavior of these residues. The DOE methodology proposed by Taguchi was used to analyze and cover a broader range of operational parameters. The most influential variables were identified for the process of heat production using DOE technique. These variables provide the best combination for heat flux with residence time of 30 min, air flow of 50 mL min−1, particle size sieved to 0.42–0.71 mm and heating rate of 25 °C min−1. The main parameters related with the thermal decomposition, effective activation energy and decomposition mechanism were newly determined using thermal techniques analysis methods (TGA/DSC) for the cassava residue.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hu G, Chen J, Gao J. Preparation and characteristics of oxidized potato starch films. Carbohydr Polym. 2009;76:291–8. https://doi.org/10.1016/j.carbpol.2008.10.032.

    Article  CAS  Google Scholar 

  2. Shah U, Naqash F, Gani A, Masoodi FA. Art and science behind modified starch edible films and coatings: a review. Compr Rev Food Sci Food Saf. 2016;15:568–80.

    Article  CAS  Google Scholar 

  3. de SouzaYes Fernandes D, dos Santos TPR, Fernandes AM, Leonel M. Harvest time optimization leads to the production of native cassava starches with different properties. Int J Biol Macromol. 2019;132:710–21. https://doi.org/10.1016/j.ijbiomac.2019.03.245.

    Article  CAS  PubMed  Google Scholar 

  4. Pandey A, Soccol CR, Nigam P, Soccol V, Vanderberghe LPS, Mohan R. Biotechnological potential of agro-industrial residues II: Cassava bagasse. Bioresourse Technol. 2000;74:81–7.

    Article  CAS  Google Scholar 

  5. Ki OL, Kurniawan A, Lin CX, Ju YH, Ismadji S. Bio-oil from cassava peel: a potential renewable energy source. Bioresour Technol. 2013;145:157–61. https://doi.org/10.1016/j.biortech.2013.01.122.

    Article  CAS  PubMed  Google Scholar 

  6. Oluwasina OO, Olaleye FK, Olusegun SJ, Oluwasina OO, Mohallem NDS. Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. Int J Biol Macromol. 2019;135:282–93. https://doi.org/10.1016/j.ijbiomac.2019.05.150.

    Article  CAS  PubMed  Google Scholar 

  7. Gazzotti S, Rampazzo R, Hakkarainen M, Bussini D, Ortenzi MA, Farina H, et al. Cellulose nanofibrils as reinforcing agents for PLA-based nanocomposites: an in situ approach. Compos Sci Technol. 2019;171:94–102.

    Article  CAS  Google Scholar 

  8. Qin Y, Liu Y, Yong H, Liu J, Zhang X, Liu J. Preparation and characterization of active and intelligent packaging films based on cassava starch and anthocyanins from Lycium ruthenicum Murr. Int J Biol Macromol. 2019;134:80–90. https://doi.org/10.1016/j.ijbiomac.2019.05.029.

    Article  CAS  PubMed  Google Scholar 

  9. Gavel A, Poria S, Sahoo P. Design of experiments analysis of abrasive friction behavior of Al-TiB2 composites. Mater Today Proc. 2019. https://doi.org/10.1016/j.matpr.2019.06.705.

    Article  Google Scholar 

  10. Osman AI, Abdelkader A, Farrell C, Rooney D, Morgan K. Reusing, recycling and up-cycling of biomass: a review of practical and kinetic modelling approaches. Fuel Process Technol. 2019;192:179–202. https://doi.org/10.1016/j.fuproc.2019.04.026.

    Article  CAS  Google Scholar 

  11. Janković B. Thermal characterization and detailed kinetic analysis of Cassava starch thermo-oxidative degradation. Carbohydr Polym. 2013;95:621–9.

    Article  Google Scholar 

  12. Monika Katiyar V. Non-isothermal degradation kinetics of PLA-functionalized gum (fG) biocomposite with dicumyl peroxide (DCP). J Therm Anal Calorim. 2019;138:195–210. https://doi.org/10.1007/s10973-019-08231-7.

    Article  CAS  Google Scholar 

  13. Alavi SE, Abdoli MA, Khorasheh F, Bayandori Moghaddam A. Non-isothermal pyrolysis of used lubricating oil and the catalytic effect of carbon-based nanomaterials on the process performance. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08436-w.

    Article  Google Scholar 

  14. Šimková L, Šulcová P. Characterization and thermal behavior of hydroxyapatite prepared by precipitation. J Therm Anal Calorim. 2019;138:321–9. https://doi.org/10.1007/s10973-019-08144-5.

    Article  CAS  Google Scholar 

  15. Bűcs G, Nőt LG, Dandé Kereskai L, Lőrinczy D. Calorimetric examination of hip pseudo-capsule after secondary hip surgeries. J Therm Anal Calorim. 2019;5:397–400.

    Article  Google Scholar 

  16. Arenas CN, Navarro MV, Martínez JD. Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model. Bioresour Technol. 2019;288:121485. https://doi.org/10.1016/j.biortech.2019.121485.

    Article  CAS  PubMed  Google Scholar 

  17. Pinto MB, Samanamud GRL, Baston EP, França AB, Naves LLR, Loures CCA, et al. Multivariate and multiobjective optimization of tannery industry effluent treatment using Musa sp flower extract in the coagulation and flocculation process. J Clean Prod. 2019;219:655–66. https://doi.org/10.1016/j.jclepro.2019.02.060.

    Article  CAS  Google Scholar 

  18. Loures CCA, Amaral MS, Da Rós PCM, Zorn SMFE, de Castro HF, Silva MB. Simultaneous esterification and transesterification of microbial oil from Chlorella minutissima by acid catalysis route: a comparison between homogeneous and heterogeneous catalysts. Fuel. 2018;211:261–8.

    Article  CAS  Google Scholar 

  19. Shankar BL, Nagaraj PM, Anil KC. Optimization of wear behaviour of AA8011-Gr composite using Taguchi technique. Mater Today Proc. 2017;4:10739–45. https://doi.org/10.1016/j.matpr.2017.08.021.

    Article  Google Scholar 

  20. Reis C, Loures C, Castro H, Rós P, Santos J, Filho H, et al. Microalgae assisted bioremediation of landfill leachate using a biocoil reactor: evaluation of operational conditions using taguchi experimental design. Br J Environ Clim Chang. 2016;6:299–308.

    Article  CAS  Google Scholar 

  21. Azizi K, Keshavarz Moraveji M, Abedini Najafabadi H. A review on bio-fuel production from microalgal biomass by using pyrolysis method. Renew Sustain Energy Rev. 2018;82:3046–59. https://doi.org/10.1016/j.rser.2017.10.033.

    Article  CAS  Google Scholar 

  22. Liu G, Liao Y, Wu Y, Ma X, Chen L. Characteristics of microalgae gasification through chemical looping in the presence of steam. Int J Hydrogen Energy. 2017;42:22730–42. https://doi.org/10.1016/j.ijhydene.2017.07.173.

    Article  CAS  Google Scholar 

  23. Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ. An overview of the organic and inorganic phase composition of biomass. Fuel. 2012;94:1–33. https://doi.org/10.1016/j.fuel.2011.09.030.

    Article  CAS  Google Scholar 

  24. González WA, Pérez JF, Chapela S, Porteiro J. Numerical analysis of wood biomass packing factor in a fixed-bed gasification process. Renew Energy. 2018;121:579–89.

    Article  Google Scholar 

  25. Aguado R, Saldarriaga JF, Atxutegi A, Bilbao J, Olazar M. Influence of the kinetic scheme and heat balance on the modelling of biomass combustion in a conical spouted bed. Energy. 2019;175:758–67. https://doi.org/10.1016/j.energy.2019.03.086.

    Article  CAS  Google Scholar 

  26. Wang S, Uzoejinwa BB, Abomohra AEF, Wang Q, He Z, Feng Y, et al. Characterization and pyrolysis behavior of the green microalga Micractinium conductrix grown in lab-scale tubular photobioreactor using Py-GC/MS and TGA/MS. J Anal Appl Pyrolysis. 2018;135:340–9. https://doi.org/10.1016/j.jaap.2018.08.019.

    Article  CAS  Google Scholar 

  27. White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis. 2011;91:1–33. https://doi.org/10.1016/j.jaap.2011.01.004.

    Article  CAS  Google Scholar 

  28. Zanatta ER, Reinehr TO, Awadallak JA, Kleinübing SJ, dos Santos JBO, Bariccatti RA, et al. Kinetic studies of thermal decomposition of sugarcane bagasse and cassava bagasse. J Therm Anal Calorim. 2016;125:437–45.

    Article  CAS  Google Scholar 

  29. Edreis EMA, Yao H. Kinetic thermal behaviour and evaluation of physical structure of sugar cane bagasse char during non-isothermal steam gasification. J Mater Res Technol. 2016;5:317–26. https://doi.org/10.1016/j.jmrt.2016.03.006.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cintia de Faria Ferreira Carraro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Faria Ferreira Carraro, C., de Almeida Loures, C.C., da Silva, L.M. et al. Characterization of cassava biomass using differential scanning calorimetry and thermogravimetry for energy purposes. J Therm Anal Calorim 138, 3811–3823 (2019). https://doi.org/10.1007/s10973-019-08905-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08905-2

Keywords

Navigation