Skip to main content
Log in

Review on influencing parameters in the performance of concentrated solar power collector based on materials, heat transfer fluids and design

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The solar collector (reflector and receiver) is the primary device being used in the concentrating solar power technologies for tapping the solar energy to meet various objectives. The performance of the solar collector is influenced by the type of reflector and receiver being selected, and its material also has significant impact. The choice of the heat transferring medium, storage material, receiver design and its performance parameter also influences the solar collector’s performance. In this regard, a review has been carried out for these parameters and presented in this paper to highlight the challenges encountered, new methodologies identified and proposed, and future research needs by various researchers to improvise the thermal efficiencies of the different types of collectors used in the concentrating solar power technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

CFD:

Computation fluid dynamics

CPCP:

Compound parabolic collector

CT:

Cylindrically shaped trough reflector

DNI:

Direct normal irradiation

DSG:

Direct steam generation

HTF:

Heat transfer fluid

LFR:

Linear Fresnel reflector

MCRT:

Monte Carlo ray tracing

PTC:

Parabolic trough collector

VFPT:

Variable focus parabolic trough

WIS:

Weizmann Institute of Science

References

  1. Ehsanul K, Pawan K, Sandeep K, Adedeji AA, Ki-Hyun K. Solar energy: potential and future prospects. Renew Sust Energ Rev. 2018;82:894–900.

    Google Scholar 

  2. Loni R, Askari AAE, Ghobadian B, Evangelos B, Le G. Numerical investigation of a solar dish concentrator with different cavity receivers and working fluids. J Clean Prod. 2018;198:1013–30.

    Google Scholar 

  3. Mohammad SD, Mostafa ZM. Experimental investigation of heat pipe solar collector using MgO nanofluids. Sol Energy Mater Sol C. 2019;191:91–9.

    Google Scholar 

  4. Behnam MG, Amir EM, Okati V, Mahmood FG, Mohammad HA, Giulio L. Optimizing flow properties of the different nanofluids inside a circular tube by using entropy generation minimization approach. J Therm Anal Calorim. 2018;135(1):801–11.

    Google Scholar 

  5. Hamed O, Mohammadamin T, Mehdi B, Mohammad HA, Marjan G, Mohammad RS. Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: state-of-the-art. Appl Sci. 2019;9:463.

    Google Scholar 

  6. Mohammad AH, Mahyar G, Mohammad AN, Mohammad AA, Fathollah P, Giulio L, Tingzhen M. Renewable energy harvesting with the application of nanotechnology: a review. Int J Energy Res. 2019;43(4):1387–410.

    Google Scholar 

  7. Loni R, Askari AAE, Ghobadian B, Ahmadi MH, Evangelos B. GMDH modeling and experimental investigation of thermal performance enhancement of hemispherical cavity receiver using MWCNT/oil nanofluid. Sol Energy. 2018;171:790–803.

    CAS  Google Scholar 

  8. Mohammad HA, Mohammad AA, Mohammad AN, Omid M, Roghayeh G. A proposed model to predict thermal conductivity ratio of Al2O3/EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach. J Therm Anal Calorim. 2019;135(1):271–81.

    Google Scholar 

  9. Yuancheng G, Abdullah AAAAR, Boshra M, Ali SA, Amin S, Pouyan T. Characterization of the nanoparticles, the stability analysis and the evaluation of a new hybrid nano-oil thermal conductivity. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08434-y.

    Article  Google Scholar 

  10. Mohammad SD, Mostafa ZM. Experimental study of water-based CuO nanofluid flow in heat pipe solar collector. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08046-6.

    Article  Google Scholar 

  11. Heydar M, Reza A, Mohammad HA, Mohammad R, Nahid G. Prediction and modeling of MWCNT/Carbon (60/40)/SAE 10 W 40/SAE 85 W 90 (50/50) nanofluid viscosity using artificial neural network (ANN) and self-organizing map (SOM). J Therm Anal Calorim. 2018;134(3):2275–86.

    Google Scholar 

  12. Hossein N, Mohammad YAJ, Reza S, Mohammad RS, Truong KN, Mostafa SS. A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows. J Therm Anal Calorim. 2019;135(3):1733–41.

    Google Scholar 

  13. Michael JSP, Arjunan TV, Matheswaran MM, Sadanandam N. Experimental and theoretical investigation on the effects of lower concentration CeO2/water nanofluid in flat-plate solar collector. J Therm Anal Calorim. 2019;135(1):29–44.

    Google Scholar 

  14. Reza H, Mohammad BS, Abbas RSA, Roghayeh G, Mohammad AN. Experimental investigation of paraffin nano-encapsulated phase change material on heat transfer enhancement of pulsating heat pipe. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08062-6.

    Article  Google Scholar 

  15. Mousa R, Seyfolah S, Seyed MV, Somchai W, Ali JC. Experimental investigation of hybrid nano-lubricant for rheological and thermal engineering applications. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08225-5.

    Article  Google Scholar 

  16. Vishal B, Vikrant K, Himanshu T. Investigation of factors influencing the performance of nanofluid-based direct absorption solar collector using Taguchi method. J Therm Anal Calorim. 2019;135(2):1493–505.

    Google Scholar 

  17. Gang L, Huilan H, Junjie Z, Hua Z. Study on the performance of a solar collector with heat collection and storage. Appl Therm Eng. 2019;147:380–9.

    Google Scholar 

  18. Sasa P, Evangelos B, Willem GLR, Velimir S, Christos T. Experimental investigation and parametric analysis of a solar thermal dish collector. Appl Therm Eng. 2017;121:126–35.

    Google Scholar 

  19. Bagher MS, Mohammad AJ, Fatemeh RA, Mohammad HA. Modeling and economic analysis of a parabolic trough solar collector used in order to preheat the process fluid of furnaces in a refinery (case study: Parsian Gas Refinery. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08135-6.

    Article  Google Scholar 

  20. Maria B, Bjorn K, Arne R, Anna W. Analysis of the effects of outdoor and accelerated ageing on the optical properties of reflector materials for solar energy applications. Sol Energy Mater Sol C. 2004;82:491–515.

    Google Scholar 

  21. Oomen R, Jayaram S. Development and performance analysis of compound parabolic concentrators with reduced gap losses-oversized reflector. Energy Convers Manag. 2001;42:1379–99.

    Google Scholar 

  22. Jia H, Zhongzhu Q, Qiming L, Yi Z. Optical design of linear fresnel reflector solar concentrators. Enrgy Proc. 2012;14:1960–6.

    Google Scholar 

  23. Abbas R, Montes MJ, Piera M, Martínez VJM. Solar radiation concentration features in Linear Fresnel Reflector arrays. Energy Convers Manag. 2012;54(1):133–44.

    Google Scholar 

  24. Chung YT, Psang DL. Optimized variable-focus-parabolic-trough reflector for solar thermal concentrator system. Sol Energy. 2012;86:1164–72.

    Google Scholar 

  25. Najla EG, Halima D, Sofiane B, Noureddine S. A comparative study between parabolic trough collector and linear Fresnel reflector technologies. Energy Proc. 2011;6:565–72.

    Google Scholar 

  26. Segal A, Epstein M. Comparative performances of ‘tower-top’ and ‘tower reflector’ central solar receivers. Sol Energy. 1999;65(4):207–26.

    Google Scholar 

  27. Avila MAL. Volumetric receivers in solar thermal power plants with central receiver system technology: a review. Sol Energy. 2011;85:891–910.

    Google Scholar 

  28. Michailidis N, Stergioudi E, Omar H, Missirlis D, Vlahostergios Z, Tsipas S, Albanakis C, Granier B. Flow, thermal and structural application of Ni-foam as volumetric solar receiver. Sol Energy Mater Sol C. 2013;109:185–91.

    CAS  Google Scholar 

  29. Thomas F, Robert PP, Oliver R, Jorg B, Bernhard H. Two novel high-porosity materials as volumetric receivers for concentrated solar radiation. Sol Energy Mater Sol C. 2004;84:291–304.

    Google Scholar 

  30. Matthew N, Hohyun L. Design of a high temperature cavity receiver for residential scale concentrated solar power. Energy. 2012;47:481–7.

    Google Scholar 

  31. Christos CA, Ilias M, Athanasios GK, Bernard H, Per S, Manuel R, Valerio FQ. Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation. Sol Energy Mater Sol C. 2007;91(6):474–88.

    Google Scholar 

  32. Thomas F, Wilhelm V, Rolf M, Olena S, Daniel G, Daniel S, Peter R. Experimental investigation of compact silicon carbide heat exchangers for high temperatures. Int J Heat Mass Transf. 2011;54:4175–81.

    Google Scholar 

  33. Carotenuto A, Reale F, Rucco G, Nocera U, Bonomo F. Thermal behavior of a multi cavity volumetric solar receiver: design and tests results. Sol Energy. 1993;50(2):113–21.

    CAS  Google Scholar 

  34. Ramon FG. Preliminary design study for a lunar solar power station using local resources. Sol Energy. 2012;86:2871–92.

    Google Scholar 

  35. Nicholas B, Graham M, Robert T, Gary R. Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems. Sol Energy. 2012;86:2293–305.

    Google Scholar 

  36. Belen Z, Jose MM, Luisa FC, Harald M. Review on thermal energy storage with phasechange: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23:251–83.

    Google Scholar 

  37. Pacio J, Wetzel T. Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems. Sol Energy. 2013;93:11–22.

    CAS  Google Scholar 

  38. Omid M, Ali K, Soteris AK, Ioan P, Somchai W. A review of the applications of nano fluids in solar energy. Int J Heat Mass Transf. 2013;57:582–94.

    Google Scholar 

  39. Xiang QW, Arun SM. Heat transfer characteristics of nano fluids: a review. Int J Therm Sci. 2007;46:1–19.

    Google Scholar 

  40. Said Z, Sajid MH, Saidur R, Kamalisarvestani M, Rahim NA. Radiative properties of nanofluids. Int Commun Heat Mass. 2013;46:74–84.

    CAS  Google Scholar 

  41. Andrej L, Evelyn NW. Optimization of nano fluid volumetric receivers for solar thermal energy conversion. Sol Energy. 2012;86:253–65.

    Google Scholar 

  42. Wenhua Y, David MF, David SS, Dileep S, Elena VT, Jules LR. Heat transfer to a silicon carbide/water nanofluid. Int J Heat Mass Transf. 2009;52:3606–12.

    Google Scholar 

  43. Tooraj Y, Farzad V, Ehsan S, Sirus Z. An experimental investigation on the effect of Al2 O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew Energy. 2012;39:293–8.

    Google Scholar 

  44. Saidur MTC, Said Z, Hasanuzzaman M, Kamyar A. Evaluation of the effect of nanofluid-based absorbers on direct solar collector. Int J Heat Mass Transf. 2012;55:5899–907.

    CAS  Google Scholar 

  45. Taide T, Yitung C. Review of study on solid particle solar receivers. Renew Sustain Energy Rev. 2010;14:265–76.

    Google Scholar 

  46. Sarada K, Jamie T, Yogi GD, Muhammad MR, Elias KS. Thermal energy storage technologies and systems for concentrating solar power plants. Prog Energy Combust. 2013;39:285–319.

    Google Scholar 

  47. Tian Y, Zhao CY. A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy. 2013;104:538–53.

    CAS  Google Scholar 

  48. Ting XL, Ju-HL RuZW, Yong TK. Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application. Int J Heat Mass Transf. 2014;75:1–11.

    Google Scholar 

  49. Mo W, Kamran S. The impact of geometrical parameters on the thermal performance of a solar receiver of dish-type concentrated solar energy system. Renew Energy. 2010;35:2501–13.

    Google Scholar 

  50. Qi L, Gilles F, Xigang Y, Pierre N, Lingai L. Compact heat exchangers: a review and future applications for a new generation of high temperature solar receiver. Renew Sustain Energy Rev. 2011;15:4855–75.

    Google Scholar 

  51. Fuqiang W, Yong S, Heping T, Chunliang Y. Thermal performance analysis of porous media receiver with concentrated solar irradiation. Int J Heat Mass Transf. 2013;62:247–54.

    Google Scholar 

  52. Shuai Y, Wang FQ, Xia XL, Tan HP, Liang YC. Radiative properties of a solar cavity receiver/reactor with quartz window. Int J Hydrog Energy. 2011;36:12148–58.

    Google Scholar 

  53. Zhigang L, Dawei T, Jinglong D, Tie L. Study on the radiation flux and temperature distributions of the concentrator receiver system in a solar dish/Stirling power facility. Appl Therm Eng. 2011;31:1780–9.

    Google Scholar 

  54. Sha L, Guoqiang X, Xiang L, Yongkai Q, Yunting G. Optical performance of a solar dish concentrator/receiver system: influence of geometrical and surface properties of cavity receiver. Energy. 2016;113:95–107.

    Google Scholar 

  55. Loni R, Kasaeian AB, Askari AAE, Ghobadian B, Le RWG. Performance study of a solar-assisted organic Rankine cycle using a dish mounted rectangular-cavity tubular solar receiver. Appl Therm Eng. 2016;108:1298–309.

    CAS  Google Scholar 

  56. Ahmed MD, Saad M, Raya KA. The effect of receiver geometry on the optical performance of a small scale solar cavity receiver for parabolic dish applications. Energy. 2016;114:513–25.

    Google Scholar 

  57. Reddy KS, Senthil KN, Veershetty G. Experimental performance investigation of modified cavity receiver with fuzzy focal solar dish concentrator. Renew Energy. 2015;74:148–57.

    Google Scholar 

  58. Jianqin Z, Kai W, Guoqing L, Hongwei W, Zhaowu J, Feng L, Yongliang L. Experimental study of the energy and exergy performance for a pressurized volumetric solar receiver. Appl Therm Eng. 2016;104:212–21.

    Google Scholar 

  59. Kentaro K, Takashi Y, Yutaka T, Hiroshige K. A model of a solar cavity receiver with coiled tubes. Sol Energy. 2017;153:249–61.

    Google Scholar 

  60. Pavlovic SR, Evangelos BA, Velimir SP, Christos T, Zoran SM. Design, simulation and optimization of a solar dish collector with spiral—coil thermal absorber. Therm Sci. 2017;4:1387–97.

    Google Scholar 

  61. Jianqin Z, Kai W, Hongwei W, Dunjin W, Juan D, Olabi AG. Experimental investigation on the energy and exergy performance of a coiled tube solar receiver. Appl Energy. 2015;156:519–27.

    Google Scholar 

  62. Fengwu B. One dimensional thermal analysis of silicon carbide ceramic foam used for solar air receiver. Int J Therm Sci. 2010;49:2400–4.

    Google Scholar 

  63. Gomez MA, Patiño D, Comesaña R, Porteiro J, Álvarez FMA, Míguez JL. CFD simulation of a solar radiation absorber. Int J Heat Mass Transf. 2013;57:231–40.

    Google Scholar 

  64. Villafán VHL, Stéphane A, Cyril C, Romero PH. Heat transfer simulation in a thermo chemical solar reactor based on a volumetric porous receiver. Appl Therm Eng. 2011;31:3377–86.

    Google Scholar 

  65. He YL, Cheng ZD, Cui FQ, Li Z, Li D. Numerical investigations on a pressurized volumetric receiver: solar concentrating and collecting modeling. Renew Energy. 2017;44:368–79.

    Google Scholar 

  66. Weidong H, Farong H, Peng H, Zeshao C. Prediction and optimization of the performance of parabolic solar dish concentrator with sphere receiver using analytical function. Renew Energy. 2013;53:18–26.

    Google Scholar 

  67. Ravi KK, Reddy KS. Thermal analysis of solar parabolic trough with porous disc receiver. Appl Energy. 2009;86:1804–12.

    Google Scholar 

  68. Janna M, Weimer AW. Evaluation of finite volume solutions for radiative heat transfer in a closed cavity solar receiver for high temperature solar thermal processes. Int J Heat Mass Transf. 2012;58:585–96.

    Google Scholar 

  69. Roldán MJ, Valenzuela L, Zarza E. Thermal analysis of solar receiver pipes with superheated steam. Appl Energy. 2013;103:73–84.

    Google Scholar 

  70. Becker M, Fend T, Hoffschmidt B, Pitz PR, Reutter O, Stamatov V, Steven M, Trimis D. Theoretical and numerical investigation of flow stability in porous materials applied as volumetric solar receivers. Sol Energy. 2006;80:1241–8.

    CAS  Google Scholar 

  71. Guillermo MR, Fuentes SAL, Martin PN. Solar thermal networks operating with evacuated-tube collectors. Energy. 2018;146:26–33.

    Google Scholar 

  72. Kenneth M, Lee W, Danel K, Hadi G, Gang C. Aerogel-based solar thermal receivers. Nano Energy. 2017;40:180–6.

    Google Scholar 

  73. Chang X, Zhe S, Lea-der C, Yuan Z. Numerical investigation on porous media heat transfer in a solar tower receiver. Renew Energy. 2011;36:1138–44.

    Google Scholar 

  74. Zhiyong W, Cyril C, Gilles F, Zhifeng W. Coupled radiation and flow modeling in ceramic foam volumetric solar air receivers. Sol Energy. 2011;85:2374–85.

    Google Scholar 

  75. Zhi QY, Yong LF, Wen JZ, Yu J, Ming JL, Zeng YL, Wen QT. Study on flow and heat transfer characteristics of composite porous material and its performance analysis by FSP and EDEP. Appl Energy. 2013;112:1367–75.

    Google Scholar 

  76. Zhiyong W, Cyril C, Fengwu B, Gilles F, Zhifeng W, Jinsong Z, Chong T. Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications. Appl Energy. 2010;87:504–13.

    Google Scholar 

  77. Daguenet FX, Toutant A, Bataille F, Olalde G. Numerical investigation of a ceramic high-temperature pressurized-air solar receiver. Sol Energy. 2013;90:164–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duraisamy Ramalingam Rajendran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajendran, D.R., Ganapathy Sundaram, E., Jawahar, P. et al. Review on influencing parameters in the performance of concentrated solar power collector based on materials, heat transfer fluids and design. J Therm Anal Calorim 140, 33–51 (2020). https://doi.org/10.1007/s10973-019-08759-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08759-8

Keywords

Navigation