Skip to main content
Log in

Entropy generation of turbulent Cu–water nanofluid flow in a heat exchanger tube fitted with perforated conical rings

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Entropy generation analysis for the Cu–water nanofluid flow through a heat exchanger tube equipped with perforated conical rings is numerically investigated. Frictional and thermal entropy generation rates are defined as functions of velocity and temperature gradients. Governing equations are solved by using finite volume method, and Reynolds number is in the range of 5000–15,000. The effects of geometrical and physical parameters such as Reynolds number, number of holes and nanoparticles volume fraction on the thermal and viscous entropy generation rates and Bejan number are investigated. The results indicate that the thermal irreversibility is dominant in most part of the tube. But it decreases with increasing the nanoparticle volume fraction. Frictional entropy generation reduces with increasing the number of holes from 4 to 10. This is because of stronger velocity gradient near the perforated holes. Bejan number decreases with augment of Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Surface area (m2)

Be :

Bejan number

C p :

Specific heat (J kg−1 K−1)

d :

Hole diameter (m)

D :

Tube diameter (m)

d p :

Nanoparticle diameter (m)

f :

Friction factor

h :

Heat transfer coefficient (Wm−2 K−1)

k :

Thermal conductivity (Wm−1 K−1)

L :

Tube length (m)

N :

Number of perforated holes

N g :

Dimensionless entropy generation

N t :

Total entropy generation

Nu :

Nusselt number

Pr :

Prandtl number

Re :

Reynolds number

\(S_{\text{g}}^{\prime \prime \prime }\) :

Local entropy generation (Wm−3 K−1)

t :

PCR thickness (m)

T :

Temperature (K)

w :

PCR width (m)

\(\mu\) :

Fluid dynamic viscosity (kg m−1 s−1)

\(\nu\) :

Fluid kinematic viscosity (m2 s−1)

\(\rho\) :

Fluid density (kg m−3)

\(\phi\) :

Nanoparticle volume fraction

eff:

Effective

f:

Base fluid

g:

Generation

in:

Inlet

p:

Particle

t:

Turbulent

References

  1. Nouri-Borujerdi A, Nakhchi M. Experimental study of convective heat transfer in the entrance region of an annulus with an external grooved surface. Exp Thermal Fluid Sci. 2018;98:557–62.

    Article  Google Scholar 

  2. Nakhchi M. Experimental optimization of geometrical parameters on heat transfer and pressure drop inside sinusoidal wavy channels. Therm Sci Eng Prog. 2018;9:121–31.

    Article  Google Scholar 

  3. Nouri-Borujerdi A, Nakhchi M. Heat transfer enhancement in annular flow with outer grooved cylinder and rotating inner cylinder: review and experiments. Appl Therm Eng. 2017;120:257–68.

    Article  Google Scholar 

  4. Akbarzadeh M, Rashidi S, Karimi N, Omar N. First and second laws of thermodynamics analysis of nanofluid flow inside a heat exchanger duct with wavy walls and a porous insert. J Therm Anal Calorim. 2018;135:177–94. https://doi.org/10.1007/s10973-018-7044-y.

    Article  CAS  Google Scholar 

  5. Nouri-Borujerdi A, Nakhchi M. Prediction of local shear stress and heat transfer between internal rotating cylinder and longitudinal cavities on stationary cylinder with various shapes. Int J Therm Sci. 2019;138:512–20.

    Article  Google Scholar 

  6. Nouri-Borujerdi A, Nakhchi M. Friction factor and Nusselt number in annular flows with smooth and slotted surface. Heat Mass Transf. 2018;55:645–53. https://doi.org/10.1007/s00231-018-2445-9.

    Article  CAS  Google Scholar 

  7. Nakhchi M, Esfahani J. Cu–water nanofluid flow and heat transfer in a heat exchanger tube equipped with cross-cut twisted tape. Powder Technol. 2018;339:985–94.

    Article  CAS  Google Scholar 

  8. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2018;135:305–23. https://doi.org/10.1007/s10973-018-7093-2.

    Article  CAS  Google Scholar 

  9. Nakhchi M, Esfahani J. Numerical investigation of rectangular-cut twisted tape insert on performance improvement of heat exchangers. Int J Therm Sci. 2019;138:75–83.

    Article  Google Scholar 

  10. Promvonge P, Eiamsa-ard S. Heat transfer behaviors in a tube with combined conical-ring and twisted-tape insert. Int Commun Heat Mass Transf. 2007;34:849–59.

    Article  Google Scholar 

  11. Menni Y, Azzi A, Chamkha A. Enhancement of convective heat transfer in smooth air channels with wall-mounted obstacles in the flow path. J Therm Anal Calorim. 2018;135:1951–76. https://doi.org/10.1007/s10973-018-7268-x.

    Article  CAS  Google Scholar 

  12. Akbarzadeh M, Rashidi S, Masoodi R, Samimi-Abianeh O. Effect of transverse twisted baffles on performance and irreversibilities in a duct. J Thermophys Heat Transf. 2018;33:49–62. https://doi.org/10.2514/1.T5373.

    Article  Google Scholar 

  13. Zade NM, Akar S, Rashidi S, Esfahani JA. Thermo-hydraulic analysis for a novel eccentric helical screw tape insert in a three dimensional tube. Appl Therm Eng. 2017;124:413–21.

    Article  Google Scholar 

  14. Messoul A, Laribi B, Youcefi A, Kolsi L, Abdelkarim A, Aichouni M. Numerical investigation of the performance of the etoile flow conditioner under different geometric and dynamic configurations. J Eur Syst Autom. 2018;51:141.

    Google Scholar 

  15. Aichouni M, Kolsi L, Ait-Messaoudenne N, Aich W. Computational study of the performance of the Etoile flow conditioner. Int J Adv Appl Sci. 2016;3:25–30.

    Article  Google Scholar 

  16. Elashmawy M, Kolsi L. Turbulent forced convection heat transfer in triangular cross sectioned helically coiled tube. Int J Adv Appl Sci. 2016;3:18–23.

    Article  Google Scholar 

  17. Nouri-Borujerdi A, Nakhchi M. Optimization of the heat transfer coefficient and pressure drop of Taylor–Couette–Poiseuille flows between an inner rotating cylinder and an outer grooved stationary cylinder. Int J Heat Mass Transf. 2017;108:1449–59.

    Article  Google Scholar 

  18. Bejan A. Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. Boca Raton: CRC Press; 2013.

    Google Scholar 

  19. Chamkha A, Rashad A, Armaghani T, Mansour M. Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu–water nanofluid. J Therm Anal Calorim. 2018;132:1291–306.

    Article  CAS  Google Scholar 

  20. Mohseni-Gharyehsafa B, Ebrahimi-Moghadam A, Okati V, Farzaneh-Gord M, Ahmadi MH, Lorenzini G. Optimizing flow properties of the different nanofluids inside a circular tube by using entropy generation minimization approach. J Therm Anal Calorim. 2018;135:801–11. https://doi.org/10.1007/s10973-018-7276-x.

    Article  CAS  Google Scholar 

  21. Javadi P, Rashidi S, Esfahani JA. Effects of rib shapes on the entropy generation in a ribbed duct. J Thermophys Heat Transf. 2017;32:691–701. https://doi.org/10.2514/1.T5298.

    Article  Google Scholar 

  22. Mehta SK, Pati S. Analysis of thermo-hydraulic performance and entropy generation characteristics for laminar flow through triangular corrugated channel. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7969-1.

    Article  Google Scholar 

  23. Shamsabadi H, Rashidi S, Esfahani JA. Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles. J Therm Anal Calorim. 2018;135:1009–19. https://doi.org/10.1007/s10973-018-7350-4.

    Article  CAS  Google Scholar 

  24. Rashidi S, Zade NM, Esfahani JA. Thermo-fluid performance and entropy generation analysis for a new eccentric helical screw tape insert in a 3D tube. Chem Eng Process. 2017;117:27–37.

    Article  CAS  Google Scholar 

  25. Shahriari A, Ashorynejad HR, Pop I. Entropy generation of MHD nanofluid inside an inclined wavy cavity by lattice Boltzmann method. J Therm Anal Calorim. 2018;135:283–303. https://doi.org/10.1007/s10973-018-7061-x.

    Article  CAS  Google Scholar 

  26. Yakut K, Sahin B. Flow-induced vibration analysis of conical rings used for heat transfer enhancement in heat exchangers. Appl Energy. 2004;78:273–88.

    Article  Google Scholar 

  27. Promvonge P, Eiamsa-Ard S. Heat transfer enhancement in a tube with combined conical-nozzle inserts and swirl generator. Energy Convers Manag. 2006;47:2867–82.

    Article  Google Scholar 

  28. Promvonge P. Heat transfer behaviors in round tube with conical ring inserts. Energy Convers Manag. 2008;49:8–15.

    Article  CAS  Google Scholar 

  29. Kongkaitpaiboon V, Nanan K, Eiamsa-Ard S. Experimental investigation of heat transfer and turbulent flow friction in a tube fitted with perforated conical-rings. Int Commun Heat Mass Transf. 2010;37:560–7.

    Article  Google Scholar 

  30. Chamoli S, Lu R, Yu P. Thermal characteristic of a turbulent flow through a circular tube fitted with perforated vortex generator inserts. Appl Therm Eng. 2017;121:1117–34.

    Article  Google Scholar 

  31. Mashayekhi R, Khodabandeh E, Bahiraei M, Bahrami L, Toghraie D, Akbari OA. Application of a novel conical strip insert to improve the efficacy of water–Ag nanofluid for utilization in thermal systems: a two-phase simulation. Energy Convers Manag. 2017;151:573–86.

    Article  CAS  Google Scholar 

  32. Esfe MH, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of Mgo–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2015;119:1205–13.

    Article  Google Scholar 

  33. Estellé P, Mahian O, Maré T, Öztop HF. Natural convection of CNT water-based nanofluids in a differentially heated square cavity. J Therm Anal Calorim. 2017;128:1765–70.

    Article  Google Scholar 

  34. Toghraie D, Abdollah MMD, Pourfattah F, Akbari OA, Ruhani B. Numerical investigation of flow and heat transfer characteristics in smooth, sinusoidal and zigzag-shaped microchannel with and without nanofluid. J Therm Anal Calorim. 2018;131:1757–66.

    Article  CAS  Google Scholar 

  35. Arabpour A, Karimipour A, Toghraie D, Akbari OA. Investigation into the effects of slip boundary condition on nanofluid flow in a double-layer microchannel. J Therm Anal Calorim. 2018;131:2975–91.

    Article  CAS  Google Scholar 

  36. Rashidi S, Karimi N, Mahian O, Esfahani JA. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim. 2018;135:1145–1159. https://doi.org/10.1007/s10973-018-7500-8.

    Article  CAS  Google Scholar 

  37. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory. Phys Rep. 2018;790:1–48.

    Article  Google Scholar 

  38. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S. Recent advances in modeling and simulation of nanofluid flows-part II: applications. Phys Rep. 2018;791:1–59.

    Article  Google Scholar 

  39. Rashidi S, Akbarzadeh M, Karimi N, Masoodi R. Combined effects of nanofluid and transverse twisted-baffles on the flow structures, heat transfer and irreversibilities inside a square duct—a numerical study. Appl Therm Eng. 2018;130:135–48.

    Article  CAS  Google Scholar 

  40. Laein RP, Rashidi S, Esfahani JA. Experimental investigation of nanofluid free convection over the vertical and horizontal flat plates with uniform heat flux by PIV. Adv Powder Technol. 2016;27:312–22.

    Article  Google Scholar 

  41. Shirejini SZ, Rashidi S, Esfahani JA. Recovery of drop in heat transfer rate for a rotating system by nanofluids. J Mol Liq. 2016;220:961–9.

    Article  CAS  Google Scholar 

  42. Rashidi S, Bovand M, Esfahani JA. Opposition of Magnetohydrodynamic and AL2O3–water nanofluid flow around a vertex facing triangular obstacle. J Mol Liq. 2016;215:276–84.

    Article  CAS  Google Scholar 

  43. Bovand M, Rashidi S, Esfahani JA. Optimum interaction between magnetohydrodynamics and nanofluid for thermal and drag management. J Thermophys Heat Transf. 2016;31:218–29.

    Article  Google Scholar 

  44. Sundar LS, Sharma K. Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts. Int J Heat Mass Transf. 2010;53:1409–16.

    Article  CAS  Google Scholar 

  45. Santra AK, Sen S, Chakraborty N. Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates. Int J Therm Sci. 2009;48:391–400.

    Article  CAS  Google Scholar 

  46. Saysroy A, Eiamsa-ard S. Enhancing convective heat transfer in laminar and turbulent flow regions using multi-channel twisted tape inserts. Int J Therm Sci. 2017;121:55–74.

    Article  Google Scholar 

  47. Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52:789–93.

    Article  CAS  Google Scholar 

  48. Rashidi S, Akbarzadeh M, Masoodi R, Languri E. Thermal-hydraulic and entropy generation analysis for turbulent flow inside a corrugated channel. Int J Heat Mass Transf. 2017;109:812–23.

    Article  Google Scholar 

  49. Bashi M, Rashidi S, Esfahani JA. Exergy analysis for a plate-fin triangular duct enhanced by a porous material. Appl Therm Eng. 2017;110:1448–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Office of the Vice Chancellor for Research, Ferdowsi University of Mashhad, under Grant No. 48255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Esfahani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhchi, M.E., Esfahani, J.A. Entropy generation of turbulent Cu–water nanofluid flow in a heat exchanger tube fitted with perforated conical rings. J Therm Anal Calorim 138, 1423–1436 (2019). https://doi.org/10.1007/s10973-019-08169-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08169-w

Keywords

Navigation