Skip to main content
Log in

Preparation of carbon nanotube-containing hybrid composites from epoxy, novolac, and epoxidized novolac resins using sol–gel method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Three different hybrid composites were prepared from tetraethyl orthosilicate oligomer-modified epoxy resin (MER), (3-glycidyloxypropyl)trimethoxysilane-modified novolac resin (MNR), epoxidized novolac resin (ENR), and furfuryl alcohol and 3-(trimethoxysilyl)propyl methacrylate (MPS)-modified carbon nanotubes (CNTS) by combination of sol–gel method and curing reaction. The first hybrid composite (CMEMNH) was prepared from CNTS, MER, and MNR and curing of epoxy groups with ethylenediamine. The second hybrid composite (CENMNH) was prepared from CNTS, ENR, and MNR and subsequent curing of ENR with ethylenediamine. The third hybrid composite (CMENH) was prepared from CNTS and MER and curing of novolac resin with epoxy groups of MER. Finally, the three hybrid composites were thermally evaluated. Successful modification of CNTCOOH by furfuryl alcohol and MPS was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy results. X-ray diffraction patterns for hybrid composites show a broad amorphous peak at diffraction angle of about 19.8° related to silica/siloxane domains. Thermogravimetric analysis results show that the higher char content (54.7) and the most increase in char residue (23.19%) are observed for the CENMNH composite with 4 mass% of CNTS. In the case of CMEMNH and CMENH composites, MER incorporation results in lower char residues. In most of the composites, the presence of CNTS and its incorporation into the hybrid network improve final thermal stability of the product. Scanning electron microscopy and transmission electron microscopy images show tubular structure of CNTS with smooth surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wen FJ, Wilkes GL. Organic/inorganic hybrid network materials by the sol–gel approach. Chem Mater. 1996;8:1667–81.

    Article  CAS  Google Scholar 

  2. Schubert U, Huesing N, Lorenz A. Hybrid inorganic-organic materials by sol–gel processing of organofunctional metal alkoxides. Chem Mater. 1995;7:2010–27.

    Article  CAS  Google Scholar 

  3. Park JK, Kang TJ. Thermal and ablative properties of low temperature carbon fiber–phenol formaldehyde resin composites. Carbon. 2002;40:2125–34.

    Article  CAS  Google Scholar 

  4. Ma Y, Wang J, Xu Y, Wang C, Chu F. Preparation and characterization of phenolic foams with eco-friendly halogen-free flame retardant. J Therm Anal Claorim. 2013;114:1143–51.

    Article  CAS  Google Scholar 

  5. Wu HD, Lee MS, Wu YD, Su YF, Ma CC. Pultruded fiber-reinforced polyurethane-toughened phenolic resin. II. Mechanical properties, thermal properties, and flame resistance. J Appl Polym Sci. 1996;62:227–34.

    Article  CAS  Google Scholar 

  6. Dogana M, Unlu SM. Flame retardant effect of boron compounds on red phosphorus containing epoxy resins. Polym Degrad Stabil. 2014;99:12–7.

    Article  Google Scholar 

  7. Wu Q, Bao J, Zhang C, Liang R, Wang B. The effect of thermal stability of carbon nanotubes on the flame retardancy of epoxy and bismaleimide/carbon fiber/buckypaper composites. J Therm Anal Calorim. 2011;103:237–42.

    Article  CAS  Google Scholar 

  8. Najafi-Shoa S, Roghani-Mamaqani H, Salami-Kalajahi M. Incorporation of epoxy resin and graphene nanolayers into silica xerogel network: an insight into thermal improvement of resin. J Sol-Gel Sci Technol. 2016;80:362–77.

    Article  CAS  Google Scholar 

  9. Han S, Gyu Yoon H, Suh KS, Gun Kim W, Jin Moon T. Cure kinetics of biphenyl epoxy-phenol novolac resin system using triphenylphosphine as catalyst. J Polym Sci A Polym Chem. 1999;37:713–20.

    Article  CAS  Google Scholar 

  10. Gualpa MC, Riccardi CC, Vazquez A. Study of the kinetic and crosslinking reaction of novolak with epoxy resin. Polymer. 1998;39:2247–53.

    Article  CAS  Google Scholar 

  11. Yadav R, Srivastava D. Blends of cardanol-based epoxidized novolac resin and CTBN for application in surface coating: a study on thermal, mechanical, chemical, and morphological characteristics. J Coat Technol Res. 2010;7:557–68.

    Article  CAS  Google Scholar 

  12. Yadav R, Awasthi P, Srivastava D. Studies on synthesis of modified epoxidized novolac resin from renewable resource material for application in surface coating. J Appl Polym Sci. 2009;114:1471–84.

    Article  CAS  Google Scholar 

  13. Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M. Organic–inorganic nanohybrids of novolac phenolic resin and carbon nanotube: high carbon yields by using carbon nanotube aerogel and resin incorporation into aerogel network. Micropor Mesopor Mater. 2016;224:58–67.

    Article  CAS  Google Scholar 

  14. Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M. Functionalization of carbon nanotubes by furfuryl alcohol moieties for preparation of novolac phenolic resin composites with high carbon yield values. Colloid Polym Sci. 2015;293:3623–31.

    Article  CAS  Google Scholar 

  15. Liu L, Ye Z. Effects of modified multi-walled carbon nanotubes on the curing behavior and thermal stability of boron phenolic resin. Polym Degrad Stabil. 2009;94:1972–8.

    Article  CAS  Google Scholar 

  16. Lee SK, Bai BC, Im JS, In SJ, Lee YS. Flame retardant epoxy complex produced by addition of montmorillonite and carbon nanotube. J Ind Eng Chem. 2010;16:891–5.

    Article  CAS  Google Scholar 

  17. Kuan CF, Chen WJ, Li YL, Chen CH, Kuan HC, Chiang CL. Flame retardance and thermal stability of carbon nanotube epoxy composite prepared from sol–gel method. J Phys Chem Solids. 2010;71:539–43.

    Article  CAS  Google Scholar 

  18. Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M. Novolac phenolic resin and graphene aerogel organic–inorganic nanohybrids: high carbon yields by resin modification and its incorporation into aerogel network. Polym Degrad Stabil. 2016;124:1–14.

    Article  CAS  Google Scholar 

  19. Wu SY, Yuen SM, Ma CCM, Chiang CL, Huang YL, Wu H, Teng CC, Yang CC, Wei MH. Preparation, morphology, and properties of silane-modified MWCNT/epoxy composites. J Appl Polym Sci. 2010;115:3481–8.

    Article  CAS  Google Scholar 

  20. Wu SY, Yuen SM, Ma CCM, Huang YL, Teng CC. Molecular motion, morphology and properties of 3-isocyanato-propyltriethoxysilane-modified multi-walled carbon nanotube/epoxy composites. Micro Nano Lett. 2011;6:463–7.

    Article  CAS  Google Scholar 

  21. Najafi-Shoa S, Roghani-Mamaqani H, Salami-Kalajahi M, Azimi R, Gholipour-Mahmoudalilou M. Incorporation of epoxy resin and carbon nanotube into silica/siloxane network for improving thermal properties. J Mater Sci. 2016;51:9057–73.

    Article  CAS  Google Scholar 

  22. Wu HL, Yang YT, Ma CCM, Kuan HC. Molecular mobility of free-radical-functionalized carbon-nanotube/siloxane/poly(urea urethane) nanocomposites. J Polym Sci A Polym Chem. 2005;43:6084–94.

    Article  CAS  Google Scholar 

  23. Alyamac E, Gua H, Soucek MD, Qiub S, Buchheit RG. Alkoxysilane oligomer modified epoxide primers. Prog Organ Coat. 2012;74:67–81.

    Article  CAS  Google Scholar 

  24. Chiang CL, Ma CCM, Wu DL, Kuan HC. Preparation, characterization, and properties of novolac-type phenolic/SiO2 hybrid organic–inorganic nanocomposite materials by sol–gel method. J Polym Sci Part A Polym Chem. 2003;41:905–13.

    Article  CAS  Google Scholar 

  25. Cherian AB, Thachil ET. Epoxidized phenolic novolac: a novel modifier for unsaturated polyester resin. J Appl Polym Sci. 2006;100:457–65.

    Article  CAS  Google Scholar 

  26. Pan G, Du Z, Zhang C, Li C, Yang X, Li H. Synthesis, characterization, and properties of novel novolac epoxy resin containing naphthalene moiety. Polymer. 2007;48:3686–93.

    Article  CAS  Google Scholar 

  27. Tyberg CS, Bergeron K, Sankarapandian M, Shih P, Loos AC, Dillard DA, McGrath JE, Riffle JS, Sorathia U. Structure-property relationships of void-free phenolic–epoxy matrix materials. Polymer. 2000;41:5053–62.

    Article  CAS  Google Scholar 

  28. Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M, Kariminejad B. Nanohybrids of novolac phenolic resin and carbon nanotube-containing silica network. J Therm Anal Calorim. 2016;2:1027–37.

    Google Scholar 

  29. Roghani-Mamaqani H, Haddadi-Asl V, Mortezaei M, Khezri K. Furfuryl alcohol functionalized graphene nanosheets for synthesis of high carbon yield novolak composites. J Appl Polym Sci. 2014;131:40273.

    Article  Google Scholar 

  30. Men XH, Zhang ZZ, Song HJ, Wang K, Jiang W. Functionalization of carbon nanotubes to improve the tribological properties of poly(furfuryl alcohol) composite coatings. Compos Sci Technol. 2008;68:1042–9.

    Article  CAS  Google Scholar 

  31. Gholipour-Mahmoudalilou M, Roghani-Mamaqani H, Azimi R, Abdollahi A. Preparation of hyperbranched poly(amidoamine)-grafted graphene nanolayers as a composite and curing agent for epoxy resin. Appl Surf Sci. 2018;428:1061–9.

    Article  CAS  Google Scholar 

  32. Adhikari PD, Jeon S, Cha MJ, Jung DS, Kim Y, Park CY. Immobilization of carbon nanotubes on functionalized graphene film grown by chemical vapor deposition and characterization of the hybrid material. Sci Technol Adv Mater. 2014;15:015007.

    Article  Google Scholar 

  33. Roghani-Mamaqani H, Khezri K. A grafting from approach to graft polystyrene chains to the surface of graphene nanolayers by RAFT polymerization: various graft densities from hydroxyl groups. Appl Surf Sci. 2016;360:373–82.

    Article  CAS  Google Scholar 

  34. Azimi R, Roghani-Mamaqani H, Gholipour-Mahmoudalilou M. Grafting poly(amidoamine) dendrimer-modified silica nanoparticles to graphene oxide for preparation of a composite and curing agent for epoxy resin. Polymer. 2017;126:152–61.

    Article  CAS  Google Scholar 

  35. Yuen SM, Ma CC, Chiang CL, Teng CC, Yu YH. Poly (vinyltriethoxysilane) modified MWCNT/polyimide nanocomposites-preparation, morphological, mechanical, and electrical properties. J Polym Sci Part A Polym Chem. 2008;46:803–16.

    Article  CAS  Google Scholar 

  36. Theodoropoulou S, Papadimitriou D, Zoumpoulakis L, Simitzis J. Structural and optical characterization of pyrolytic carbon derived from novolac resin. Anal Bioanal Chem. 2004;379:788–91.

    Article  CAS  Google Scholar 

  37. George GA, Clarke PC, Jhon NS, Friend G. Real time monitoring of the cure reaction of a TGDDM/DDS epoxy resin using fiber optic FT-IR. J Appl Polym Sci. 1991;42:643–57.

    Article  CAS  Google Scholar 

  38. Cochet M, Maser WK, Benito AM, Callejas MA, Martinez MT, Benoit JM, Schreiber J, Chauvet O. Synthesis of a new polyaniline/nanotube composite: in situ polymerisation and charge transfer through site-selective interaction. Chem Commun. 2001;1450:1451.

    Google Scholar 

  39. Yao X, Wu H, Wang J, Qu S, Chen G. Carbon nanotube/poly(methyl methacrylate) (CNT/PMMA) composite electrode fabricated by in situ polymerization for microchip capillary electrophoresis. Chem Eur J. 2007;13:846–53.

    Article  CAS  Google Scholar 

  40. Lei Z, Yan Y, Feng J, Wu J, Huang G, Li X, Xing W, Zhao L. Enhanced power factor within graphene hybridized carbon aerogels. RSC Adv. 2015;5:25650–6.

    Article  CAS  Google Scholar 

  41. Wu C, Huang X, Wang G, Wu X, Yang K, Li S, Jiang P. Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites. J Mater Chem. 2012;22:7010–9.

    Article  CAS  Google Scholar 

  42. Roghani-Mamaqani H, Haddadi-Asl V, Sobhkhiz Z, Ghaderi-Ghahfarrokhi M. Grafting poly(methyl methacrylate) from azo-functionalized graphene nanolayers via reverse atom transfer radical polymerization. Reverse atom transfer radical polymerization of methyl methacrylate in the presence of Azo-functionalized carbon nanotubes: a grafting from approach. Colloid Polym Sci. 2014;292:2971–81.

    Article  CAS  Google Scholar 

  43. Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y. In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem. 2011;21:13290–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Iran National Science Foundation (INSF) is greatly appreciated for its financial support (Grant No. 95839965).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Roghani-Mamaqani or Mehdi Salami-Kalajahi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, H., Roghani-Mamaqani, H. & Salami-Kalajahi, M. Preparation of carbon nanotube-containing hybrid composites from epoxy, novolac, and epoxidized novolac resins using sol–gel method. J Therm Anal Calorim 132, 513–524 (2018). https://doi.org/10.1007/s10973-018-6992-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-6992-6

Keywords

Navigation