Skip to main content
Log in

Thermal degradation of ceramic slurry-coated polyurethane foam used in making reticulated porous SiC ceramics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A 25-μm-thick ceramic slurry-coated 12 ppi (pores per linear inch) polyurethane foam suitable for synthesis of oxide-bonded reticulated porous SiC ceramics was analysed by the thermal analysis techniques (thermogravimetry and differential thermal analysis) up to 700 °C in air to investigate the polymer degradation reactions associated with the pyrolysis stage of the fabrication process. The kinetic parameters of the polymer degradation reactions were determined using the non-isothermal thermogravimetric data, and the degradation mechanism was evaluated. The effects of slurry coating on the foam degradation process were discussed, and slurry coating on foam was found to have insignificant effects on PUF degradation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aubrey LS, Schmahl R. Application of reticulated silicon carbide foam filters for iron casting applications. Foundry Trade J. 1991;165:769–73.

    Google Scholar 

  2. Bao S. Filtration of aluminium—experiments, wetting and modelling. Ph. D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2011.

  3. Adler J. Ceramic diesel particulate filters. Int J Appl Ceram Technol. 2005;2:429–39.

    Article  CAS  Google Scholar 

  4. Nguyen P, Pham C. Innovative porous SiC-based materials: from nanoscopic understanding to tunable carriers serving catalytic needs. Appl Catal A. 2011;391:443–54.

    Article  CAS  Google Scholar 

  5. Liu H, Li S, Zhang S, Chen L, Zhou G, Wang J, Wang X. Catalytic performance of monolithic foam Ni/SiC catalyst in carbon dioxide reforming of methane to synthesis gas. Catal Lett. 2008;120:111–5.

    Article  CAS  Google Scholar 

  6. Rodriguez P, Meille V, Pallier S, Sawah MAA. Deposition and characterization of TiO2 coatings on various supports for structured (photo) catalytic reactors. Appl Catal A. 2009;360:154–62.

    Article  CAS  Google Scholar 

  7. Masson R, Keller V, Keller N. β-SiC alveolar foam as a structured photocatalytic support for the gas phase photocatalytic degradation of methylethylketone. Appl Catal B Environ. 2015;170:301–11.

    Article  Google Scholar 

  8. Kouame NA, Robert D, Keller V, Keller N, Pham C, Nguyen P. Preliminary study of the use of β-SiC foam as a photocatalytic support for water treatment. Catal Today. 2011;161:3–7.

    Article  CAS  Google Scholar 

  9. Xing H, Cao X, Hu W, Zhao V, Zhang J. Interfacial reactions in 3D-SiC network reinforced Cu-matrix composites prepared by squeeze casting. Mater Lett. 2005;59:1563–6.

    Article  CAS  Google Scholar 

  10. Muthukumar P. Development of porous radiant burners for domestic LPG cooking and industrial applications. J Pet Environ Biotechnol. 2014;5:52.

    Google Scholar 

  11. Brown DD, Green DJ. Investigation of strut crack formation in open cell alumina ceramics. J Am Ceram Soc. 1994;77:1467–72.

    Article  CAS  Google Scholar 

  12. Dey A, Kayal N, Chakarbarti OP, Caldato RF, André CM, Innocentini MDM, Guerra VG. Studies on permeability properties and particle capture efficiencies of porous SiC ceramics processed by oxide bonding technique. J Porous Media. 2015;18:861–72.

    Article  Google Scholar 

  13. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva MA. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrolysis. 2008;81:253–62.

    Article  CAS  Google Scholar 

  14. Georgieva V, Zvezdova D, Vlaev L. Non-Isothermal kinetics of thermal degradation of chitin. J Therm Anal Calorim. 2013;111:763–71.

    Article  CAS  Google Scholar 

  15. Maity A, Das H, Kalita D, Kayal N, Goswami T, Chakrabarti OP. Studies on formation and siliconization of carbon template of coir fibreboard precursor to SiC ceramics. J Eur Ceram Soc. 2014;34:3499–511.

    Article  CAS  Google Scholar 

  16. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  17. Rein G, Lautenberger C, Fernandez-Pello AC, Torero JL, Urban DL. Application of genetic algorithms and thermogravimetry to determine kinetics of polyurethane foam in smoldering combustion. Combust Flame. 2006;146:95–108.

    Article  CAS  Google Scholar 

  18. Ravey M, Pearce EM. Flexible polyurethane foam. I. Thermal decomposition of a polyether based water blown commercial type of flexible polyurethane foam. J Appl Polym Sci. 1997;63:47–74.

    Article  CAS  Google Scholar 

  19. Font R, Fullana A, Caballero JA, Candela J, Garica A. Pyrolysis study of polyurethane. J Anal Appl Pyrolysis. 2001;58–59:63–77.

    Article  Google Scholar 

  20. Auerbach I. Evaluation of kinetic parameters approximate for modeling urethane foam insulation performance. J Therm Anal Calorim. 1989;35:1629–41.

    Article  CAS  Google Scholar 

  21. Bar-Ilam A, Putzeys OM, Rein G, Fernandez-Pello AC, Urban DL. Transition from forward smoldering to flaming in small polyurethane foam samples. Proc Combust Inst. 2005;30:2327–34.

    Article  Google Scholar 

  22. Chao CYH, Wang JH. Comparison of thermal decomposition behavior of a non-fire retarded and a fire-retarded flexible polyurethane foam with phosphorous and brominated additives. J Fire Sci. 2001;19:137–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (KVV) acknowledges with thanks the summer internship provided to him by CSIR-CGCRI, Kolkata, India, under the 12 Five-Year Plan Project “Advanced Ceramic Materials and Components for Energy and Structural Applications (CERMESA) - ESC0104”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omprakash Chakrabarti.

Appendix

Appendix

Determination of loss in mass in slurry-coated PUF sample

Let X sp is the initial mass of the slurry-coated PUF sample (in mg), F sp is the final mass retention (in %), and t sp is the mass retention (in %) at any time t. Let for the ceramic powder obtained by drying the slurry, the corresponding figures are X s , F s and t s.

$${\text{Final mass }}\left( {\text{in mg}} \right){\text{ of the slurry-coated PUF sample }} = \, \left( {X_{\text{sp}} \times F_{\text{sp}} } \right)/100$$
(7)

Let us suppose that the entire sample of the slurry-coated PUF contains only slurry. In this case,

$${\text{Final mass }}\left( {\text{in mg}} \right) \, = \, \left( {X_{\text{sp}} \times F_{\text{s}} } \right)/100$$
(8)
$${\text{Then, the mass }}\% {\text{ of slurry in the slurry-coated PUF }} = \, \left[ {\left( {X_{\text{sp}} \times F_{\text{s}} } \right)/ \, \left( {X_{\text{sp}} \times F_{\text{sp}} } \right)} \right] \, \times \, 100 = \, \left[ {F_{\text{s}} /F_{\text{sp}} } \right] \, \times \, 100$$
(9)
$${\text{The mass }}\% {\text{ of PUF in the slurry-coated PUF }} = \, \left[ {1 \, {-} \, \left( {F_{\text{s}} /F_{\text{sp}} } \right)} \right] \, \times \, 100$$
(10)
$${\text{Initial mass }}\left( {\text{in mg}} \right){\text{ of PUF in the slurry-coated PUF or }}m_{\text{i}} = X_{\text{sp}} \times \, \left[ {1 \, {-} \, \left( {F_{\text{s}} /F_{\text{sp}} } \right)} \right]$$
(11)
$$\begin{aligned} {\text{Final mass }}\left( {\text{in mg}} \right){\text{ of PUF in the slurry-coated PUF or }}m_{\text{f}} \hfill \\ = \, \left( {X_{\text{sp}} \times F_{\text{sp}} } \right)/100 \, {-} \, \left[ {X_{\text{sp}} \times \, \left( {F_{\text{s}} /F_{\text{sp}} } \right) \, \times F_{\text{s}} } \right]/100 \hfill \\ = \, \left( {X_{\text{sp}} /100} \right) \, \left[ {F_{\text{sp}} {-}F_{\text{s}}^{2} /F_{\text{sp}} } \right] \hfill \\ \end{aligned}$$
(12)
$$\begin{aligned} {\text{Mass }}\left( {\text{in mg}} \right){\text{ of PUF in the slurry-coated PUF at any time }}t{\text{ or }}m_{t} \hfill \\ = \, \left( {X_{\text{sp}} \times t_{\text{sp}} } \right)/100 \, {-} \, \left[ {X_{\text{sp}} \times \, \left( {F_{\text{s}} /F_{\text{sp}} } \right) \, \times t_{\text{s}} } \right]/100 \, \hfill \\ = \, \left( {X_{\text{sp}} /100} \right) \, \left[ {t_{\text{sp}} {-} \, \left( {F_{\text{s}} /F_{\text{sp}} } \right) \, \times t_{\text{s}} } \right] \hfill \\ \end{aligned}$$
(13)

Thus, the degree of conversion for PUF in the slurry-coated PUF at time t or,

$$\alpha = \frac{{m_{\text{i}} - m_{\text{t}} }}{{m_{\text{i}} - m_{\text{f}} }}$$
(14)

can be determined by Eqs. (11)–(14).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, A., Biswas, P., Veerapandiyan, V.K. et al. Thermal degradation of ceramic slurry-coated polyurethane foam used in making reticulated porous SiC ceramics. J Therm Anal Calorim 131, 2603–2610 (2018). https://doi.org/10.1007/s10973-017-6863-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6863-6

Keywords

Navigation