Skip to main content
Log in

The important role of crystallinity and amylose ratio in thermal stability of starches

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal features of potato, banana, corn and cassava starches were correlated with structural properties. These starches were characterized by SEM, XRD, FTIR-ATR, DSC and TG. The crystalline index of starches was evaluated, and the banana starch presented the highest. Infrared ratios of amorphous/crystalline regions were close to XRD data for potato and corn starches. The amylose ratio was correlated with T g and gelatinization measurements by DSC, with some restrictions. TG experiments demonstrated that the crystalline array affects the thermal stability of starches, but the major component is the amylose ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chevigny C, Foucat L, Rolland-Sabaté A, Buléon A, Lourdin D. Shape-memory effect in amorphous potato starch: the influence of local orders and paracrystallinity. Carbohydr Polym. 2016;146:411–9.

    Article  CAS  Google Scholar 

  2. Ferreira ARV, Alves VD, Coelhoso IM. Polysaccharide-based membranes in food packaging applications. Membranes. 2016;6:1–17.

    Article  Google Scholar 

  3. Zhu J, Zhang S, Zhang B, Qiao D, Pu H, Liu S, Li L. Structural features and thermal property of propionylated starches with different amylose/amylopectin ratio. Int J Biol Macromol. 2017;97:123–30.

    Article  CAS  Google Scholar 

  4. Garcia MC, Franco CML, Júnior MSS, Caliari M. Structural characteristics and gelatinization properties of sour cassava starch. J Therm Anal Calorim. 2016;123:919–26.

    Article  CAS  Google Scholar 

  5. Stawski D. New determination method of amylose content in potato starch. Food Chem. 2008;110:5.

    Article  Google Scholar 

  6. Vermeylen R, Goderis B, Reynaers H, Delcour JA. Amylopectin molecular structure reflected in macromolecular organization of granular starch. Biomacromol. 2004;5:1775–86.

    Article  CAS  Google Scholar 

  7. Kadokawa JI. Architecture of amylose supramolecules in form of inclusion complexes by phosphorylase-catalyzed enzymatic polymerization. Biomolecules. 2013;3:369–85.

    Article  Google Scholar 

  8. Jane J. Effects of amylopectin branch chain-length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 1999;76:629–37.

    Article  CAS  Google Scholar 

  9. Bogracheva TY, Wang YL, Wang TL, Hedley CL. Structural studies of starches with different water contents. Biopolymers. 2002;64:268–81.

    Article  CAS  Google Scholar 

  10. Thomas DJ, Atwell WA. Starches. 6th ed. Minesota: Eagan Press Handbook Series; 1999.

    Book  Google Scholar 

  11. Jane J-L. Structural features of starch granules II. In: Be Miller J, Whistler L, editors. Starch: chemistry and technology. Oxford: Food Science and Technology International Series; 2009. p. 193–227.

    Chapter  Google Scholar 

  12. Santana ÁL, Angela M, Meireles A. New starches are the trend for industry applications: a review. Food Public Health. 2014;4:229–41.

    Article  Google Scholar 

  13. Alcázar-Alay SC, Meireles MAA. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci Technol. 2015;35:215–36.

    Article  Google Scholar 

  14. Moo-Huchin VM, Cabrera-Sierra MJ, Estrada-León RJ, Ríos-Soberanis CR, Betancur-Ancona D, Chel-Guerrero L, Ortíz-Fernandes A, Estrada-Mota IA, Pérez-Pacheco E. Determination of some physicochemical and rheological characteristics of starch obtained from Brosimum alicastrum swartz seeds. Food Hydrocoll. 2015;45:48–54.

    Article  CAS  Google Scholar 

  15. Das D, Jha S, Kumar KJ. Isolation and release characteristics of starch from the rhizome of Indian Palo. Int J Biol Macromol. 2015;72:341–6.

    Article  CAS  Google Scholar 

  16. Elmi Sharlina MS, Yaacob WA, Lazim AM, Fazry S, Lim SJ, Abdullah S, et al. Physicochemical properties of starch from dioscorea pyrifolia tubers. Food Chem. 2017;220:225–32.

    Article  CAS  Google Scholar 

  17. Aggarwal P, Dollimore D. A comparative study of the degradation of different starches using thermal analysis. Talanta. 1996;43:1527–30.

    Article  CAS  Google Scholar 

  18. Guinesi LS, Róz AL, Corradini E, Mattoso LHC, Teixeira EDM, Curvelo AAS. Kinetics of thermal degradation applied to starches from different botanical origins by non-isothermal procedures. Thermochim Acta. 2006;447:190–6.

    Article  CAS  Google Scholar 

  19. Monnier X, Maigret JE, Lourdin D, Saiter A. Glass transition of anhydrous starch by fast scanning calorimetry. Carbohydr Polym. 2017;173:77–83.

    Article  CAS  Google Scholar 

  20. Figueroa Y, Guevara M, Pérez A, Cova A, Sandoval AJ, Müller AJ. Effect of sugar addition on glass transition temperatures of cassava starch with low to intermediate moisture contents. Carbohydr Polym. 2016;146:231–7.

    Article  CAS  Google Scholar 

  21. Tao J, Huang J, Yu L, Li Z, Liu H, Yuan B, Yuan B, Zeng D. A new methodology combining microscopy observation with Artificial Neural Networks for the study of starch gelatinization. Food Hydrocoll. 2018;74:151–8.

    Article  CAS  Google Scholar 

  22. Li Z, Liu W, Gu Z, Li C, Hong Y, Cheng L. The effect of starch concentration on the gelatinization and liquefaction of corn starch. Food Hydrocoll. 2015;48:189–96.

    Article  CAS  Google Scholar 

  23. Chen X, Du X, Chen P, Guo L, Xu Y, Zhou X. Morphologies and gelatinization behaviours of high-amylose maize starches during heat treatment. Carbohydr Polym. 2017;157:637–42.

    Article  CAS  Google Scholar 

  24. Hesso N, Le-Bail A, Loisel C, Chevallier S, Pontoire B, Queveau D, Le Bail A. Monitoring the crystallization of starch and lipid components of the cake crumb during staling. Carbohydr Polym. 2015;133:533–8.

    Article  CAS  Google Scholar 

  25. Li W, Guo H, Wang P, Tian X, Zhang W, Saleh ASM, et al. Physicochemical characteristics of high pressure gelatinized mung bean starch during recrystallization. Carbohydr Polym. 2015;131:432–8.

    Article  CAS  Google Scholar 

  26. Mukurumbira A, Mariano M, Dufresne A, Mellem JJ, Amonsou EO. Microstructure, thermal properties and crystallinity of amadumbe starch nanocrystals. Int J Biol Macromol. 2017;102:241–7.

    Article  CAS  Google Scholar 

  27. Hung PV, Duyen VTN. Structure, physicochemical characteristics, and functional properties of starches isolated from yellow. Starch-Stärke. 2016;69:1–27.

    Google Scholar 

  28. Yu L, Christie G. Measurement of starch thermal transitions using differential scanning calorimetry. Carbohydr Polym. 2001;46:179–84.

    Article  CAS  Google Scholar 

  29. Ratnayake WS, Jackson DS. A new insight into the gelatinization process of native starches. Carbohydr Polym. 2007;67:511–29.

    Article  CAS  Google Scholar 

  30. Montgomery ED, Senti FR. Separation of amylose from amylopectin of starch by an extraction-sedimentation procedure. J Polym Sci A Polym Chem. 1958;28:1–9.

    CAS  Google Scholar 

  31. Jan KN, Panesar PS, Rana JC, Singh S. Structural, thermal and rheological properties of starches isolated from Indian quinoa varieties. Int J Biol Macromol. 2017;102:315–22.

    Article  CAS  Google Scholar 

  32. Nara S, Mori A, Komiya T. Study on relative crystallinity of moist potato starch. Starch-Stärke. 1978;30:111–407-10.

  33. Huang J, Zhao L, Man J, Wang J, Zhou W, Huai H, Wei C. Comparison of physicochemical properties of B-type nontraditional starches from different sources. Int J Biol Macromol. 2015;78:165–72.

    Article  CAS  Google Scholar 

  34. Zhu T, Jackson DS, Wehling RL, Geera B. Comparison of amylose determination methods and the development of a dual wavelenght iodine binding technique. Cereal Chem. 2008;85:51–8.

    Article  CAS  Google Scholar 

  35. International Organization for Standardization—ISO. ISO 6647-1:2007: Determination of amylose content—part 1: Reference Method. Geneva: ISO, 2007, 1–7.

  36. International Organization for Standardization—ISO. ISO 6647-2:2007: Determination of amylose content—part 2: Routine methods. Geneva: ISO, 2007, 1–9.

  37. Carmona-Garcia R, Agurre-Cruz A, Yee-Madeira H, Bello-Pérez LA. Dual modification of banana starch: partial characterization. Starch-Stärke. 2009;61:656–64.

    Article  CAS  Google Scholar 

  38. Lindeboom N, Chang PR, Tyler RT. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Starch-Stärke. 2004;56:89–99.

    Article  CAS  Google Scholar 

  39. Jane J-L, Kasemsuwan T, Leas S, Zobel H, Robyt JF. Anthology of starch granule morphology by scanning electron microscopy. Starch-Stärke. 1994;46:121–9.

    Article  CAS  Google Scholar 

  40. Sajilata MG, Singhal RS, Kulkarni PR. Resistant starch—a review. Compr Rev Food Sci F. 2006;5:1–17.

    Article  CAS  Google Scholar 

  41. Hornung PS, Cordoba LP, Lazzarotto SRS, Schnitzler E, Lazzarotto M, Ribani RH. Brazilian Dioscoreaceas starches. J Therm Anal Calorim. 2017;127:1869–77.

    Article  CAS  Google Scholar 

  42. Hernández-Jaimes C, Bello-Pérez LA, Vernon-Carter EJ, Alvarez-Ramirez J. Plantain starch granules morphology, crystallinity, structure transition, and size evolution upon acid hydrolysis. Carbohydr Polym. 2013;95:207–13.

    Article  Google Scholar 

  43. Pelissari FM, Andrade-Mahecha MM, Sobral PJDA, Menegalli FC. Isolation and characterization of the flour and starch of plantain bananas (Musa paradisiaca). Starch-Stärke. 2012;64:382–91.

    Article  CAS  Google Scholar 

  44. Ma Z, Boye JI. Research advances on structural characterization of resistant starch and its structure-physiological function relationship: a review. Crit Rev Food Sci Nutr. 2016;1:1–111.

    Article  Google Scholar 

  45. Sevenou O, Hill SE, Farhat IA, Mitchell JR. Organisation of the external region of the starch granule as determined by infrared spectroscopy. Int J Biol Macromol. 2002;31:79–85.

    Article  CAS  Google Scholar 

  46. Villas-Boas F, Franco CML. Effect of bacterial β-amylase and fungal α-amylase on the digestibility and structural characteristics of potato and arrowroot starches. Food Hydrocoll. 2016;52:795–803.

    Article  CAS  Google Scholar 

  47. Gunaratne A, Hoover R. Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydr Polym. 2002;49:425–37.

    Article  CAS  Google Scholar 

  48. Zeng J, Li G, Gao H, Ru Z. Comparison of A and B starch granules from three wheat varieties. Molecules. 2011;16:10570–91.

    Article  Google Scholar 

  49. Zobel HF. Starch crystal transformations and their industrial importance. Starch-Stärke. 1988;40:1–7.

    Article  CAS  Google Scholar 

  50. Nuwamanya E, Baguma Y, Emmambux N, Rubaihayo P. Crystalline and pasting properties of cassava starch are influenced by its molecular properties. Afr J Food Sci. 2010;4:8–15.

    CAS  Google Scholar 

  51. Kizil R, Irudayaraj J, Seetharaman K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J Agric Food Chem. 2002;50:3912–8.

    Article  CAS  Google Scholar 

  52. Herrero-Martínez JM, Schoenmakers PJ, Kok WT. Determination of the amylose-amylopectin ratio of starches by iodine-affinity capillary electrophoresis. J Chromatogr A. 2004;1053:227–34.

    Article  Google Scholar 

  53. McGrance SJ, Cornell HJ, Rix CJ. A simple and rapid colorimetric method for the determination of amylose in starch products. Starch-Stärke. 1998;50:158–63.

    Article  CAS  Google Scholar 

  54. Knutson CA. Evaluation of variations in amylose–iodine absorbance spectra. Carbohydr Polym. 1999;42:65–72.

    Article  Google Scholar 

  55. Dunn LB Jr, Krueger WJ. Branching ratios of starch via proton nuclear magnetic resonance and their use in determining amylose/amylopectin content. Evidence for three types of amylopectin. Macromol Symp. 1999;140:179–86.

    Article  CAS  Google Scholar 

  56. Kim J, Ren C, Shin M. Physicochemical properties of starch isolated from eight different varieties of Korean sweet potatoes. Starch-Stärke. 2013;65:923–30.

    Article  CAS  Google Scholar 

  57. Swinkels JJM. Composition and properties of commercial native starches. Starch-Stärke. 1981;1:1–5.

    Google Scholar 

  58. Eggleston G, Heverlee R, Akoni S. Phvsicochemical studies on starches isolated. Starch-Stärke. 1992;44:121–8.

    Article  CAS  Google Scholar 

  59. Ling BL, Osman EM, Fernandes J, Reilly PJ. Physical properties of starch from Cavendish banana fruit. Starch-Stärke. 1982;34:184–8.

    Article  CAS  Google Scholar 

  60. De La Torre-Gutierrez L, Torruco-Uco JG, Castellanos-Ruelas A, Chel-Guerrero LA, Betancur-Ancona D. Isolation and structure investigations of square banana (Musa balbisiana) starch. Starch/Staerke. 2007;59:326–33.

    Article  Google Scholar 

  61. Morrison WR, Laignelet B. An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J Cereal Sci. 1983;1:9–20.

    Article  CAS  Google Scholar 

  62. Bates FL, French D, Rundle RE. Amylose and amylopectin content of starches determined by their iodine complex formation. J Am Chem Soc. 1943;65:142–8.

    Article  CAS  Google Scholar 

  63. Wang S, Li C, Copeland L, Niu Q, Wang S. Starch retrogradation: a comprehensive review. Compr Rev Food Sci F. 2015;14:568–85.

    Article  CAS  Google Scholar 

  64. Gladys DG, Rose-monde M, Micaël BE, Sebastien NL. Physicochemical characterization of starches from seven improved cassava varieties: potentiality of industrial utilization. J Appl Biosci. 2014;73(1):6002–11.

    Google Scholar 

  65. Defloor I, Dehing I, Delcour JA. Physico-chemical properties of cassava starch. Starch-Stärke. 1986;5:58–64.

    Google Scholar 

  66. Charles AL, Chang YH, Ko WC, Sriroth K, Huang TC. Influence of amylopectin structure and amylose content on the gelling properties of five cultivars of cassava starches. J Agric Food Chem. 2005;53:2017–25.

    Article  Google Scholar 

  67. Zhou W, Yang J, Hong Y, Liu G, Zheng J, Gu Z. Impact of amylose content on starch physicochemical properties in transgenic sweet potato. Carbohydr Polym. 2015;122:417–27.

    Article  CAS  Google Scholar 

  68. Li JH, Vasanthan T, Hoover R, Rossnagel BG. Starch from hull-less barley: ultrastructure and distribution of granule-bound proteins. Cereal Chem. 2003;80:524–32.

    Article  CAS  Google Scholar 

  69. Fan F, Roos YH. Glass transition-associated structural relaxations and applications of relaxation times in amorphous food solids: a review. Food Eng Rev. 2017;1:1–14.

    Google Scholar 

  70. Chung H-J, Lee E-J, Lim S-T. Comparison in glass transition and enthalpy relaxation between native and gelatinized rice starches. Carbohydr Polym. 2002;48:287–98.

    Article  CAS  Google Scholar 

  71. Zeleznak KJ, Hoseney RC. The glass transition in starch. Cereal Chem. 1987;64:121–4.

    CAS  Google Scholar 

  72. Lim ST, Chang EH, Chung HJ. Thermal transition characteristics of heat-moisture treated corn and potato starches. Carbohydr Polym. 2001;46:107–15.

    Article  CAS  Google Scholar 

  73. Perdomo J, Cova A, Sandoval AJ, García L, Laredo E, Müller AJ. Glass transition temperatures and water sorption isotherms of cassava starch. Carbohydr Polym. 2009;76:305–13.

    Article  CAS  Google Scholar 

  74. Bizot H, Le Bail P, Leroux B, Davy J, Roger P, Buleon A. Calorimetric evaluation of the glass transition in hydrated, linear and branched polyanhydroglucose compounds. Carbohydr Polym. 1997;32:33–50.

    Article  CAS  Google Scholar 

  75. Muñoz LA, Pedreschi F, Leiva A, Aguilera JM. Loss of birefringence and swelling behavior in native starch granules: microstructural and thermal properties. J Food Eng. 2015;152:65–71.

    Article  Google Scholar 

  76. Ai Y, Jane JL. Gelatinization and rheological properties of starch. Starch-Stärke. 2015;67:213–24.

    Article  CAS  Google Scholar 

  77. Vamadevan V, Bertoft E. Structure–function relationships of starch components. Starch-Stärke. 2015;67:55–68.

    Article  CAS  Google Scholar 

  78. Hoover R, Vasanthan T. The effect of annealing on the physicochemical properties of wheat, oat, potato and lentil starches. J Food Biochem. 1993;17:303–25.

    Article  Google Scholar 

  79. Vermeylen R, Goderis B, Delcour JA. An X-ray study of hydrothermally treated potato starch. Carbohydr Polym. 2006;64:364–75.

    Article  CAS  Google Scholar 

  80. Núñez-Santiago MC, Bello-Pérez LA, Tecante A. Swelling-solubility characteristics, granule size distribution and rheological behavior of banana (Musa paradisiaca) starch. Carbohydr Polym. 2004;56:65–75.

    Article  Google Scholar 

  81. Wootton BM, Bamunuarachchi A. Application of differential scanning calorimetry to starch gelatinization: I. Comercial native and modified starches. Starch-Stärke. 1979;6:201–4.

    Article  Google Scholar 

  82. Sandhu KS, Singh N. Some properties of corn starches II: physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chem. 2007;101:1499–507.

    Article  CAS  Google Scholar 

  83. Atichokudomchai N, Varavinit S, Chinachoti P. A study of annealing and freeze-thaw stability of acid-modified tapioca starches by differential scanning calorimetry (DSC). Starch-Stärke. 2002;54:343–9.

    Article  CAS  Google Scholar 

  84. Waliszewski KN, Aparicio MA, Bello LA, Monroy JA. Changes of banana starch by chemical and physical modification. Carbohydr Polym. 2003;52:237–42.

    Article  CAS  Google Scholar 

  85. Cyras VP, Zenklusen MCT, Vazquez A. Relationship between structure and properties of modified potato starch biodegradable films. J Appl Polym Sci. 2006;101:4313–9.

    Article  CAS  Google Scholar 

  86. Manek RV, Builders PF, Kolling WM, Emeje M, Kunle OO. Physicochemical and binder properties of starch obtained from Cyperus esculentus. AAPS J. 2012;13:379–87.

    CAS  Google Scholar 

  87. Beery KE, Ladisch MR. Chemistry and properties of starch based desiccants. Enzyme Microb Technol. 2001;28:573–81.

    Article  CAS  Google Scholar 

  88. Ostroff A, Hatzidimitriu E, Kokini JL. Thermodynamics of water and ethanol adsorption on model biomass systems. Biotechnol Bioeng. 1988;31:880–4.

    Article  CAS  Google Scholar 

  89. Pineda-Gõmez P, Angel-Gil NC, Valencia-Muñoz C, Rosales-Rivera A, Rodríguez-García ME. Thermal degradation of starch sources: green banana, potato, cassava, and corn—kinetic study by non-isothermal procedures. Starch-Stärke. 2014;66:691–9.

    Article  Google Scholar 

  90. Liu X, Yu L, Xie F, Li M, Chen L, Li X. Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios. Starch-Stärke. 2010;62:139–46.

    Article  CAS  Google Scholar 

  91. Liu P, Yu L, Liu H, Chen L, Li L. Glass transition temperature of starch studied by a high-speed DSC. Carbohydr Polym. 2009;77:250–3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Fapesb for the scholarship (8892/2015) granted to Paulo Vitor França Lemos, to Dr. Heloysa Martins Carvalho Andrade and Msc. Maurício Brandão (CIEnAm–UFBa) for the XRD analysis; to Carina Soares do Nascimento (LCM–IfBa) for the SEM and DSC analysis; and to Brazilian Agricultural Research Corporation (EMBRAPA) for the starch samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Vitor França Lemos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemos, P.V.F., Barbosa, L.S., Ramos, I.G. et al. The important role of crystallinity and amylose ratio in thermal stability of starches. J Therm Anal Calorim 131, 2555–2567 (2018). https://doi.org/10.1007/s10973-017-6834-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6834-y

Keywords

Navigation